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Eneray Spectrum
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Eneray Spectrum
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Eneray Spectrum
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/_evatrons?

Hillas-plot (necessary but not sufficient!)
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Propacation of extraaalactic protons
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Propacation of extraaalactic protons

redshift |+ p+ycve —p+et +e”

distance [Mpc]
5 10 100 1000 3000

1

< 21
() - 0.9
o 205F
19.5:* —0.6
- e
19 —0.5
18.5F =04
C 0.3
18—
- 0.2
17.5
C 0.1
i e N N N R I

3 25 -2 -15 -1 -05 0 05 0

(CRPropa calculation, M.U. arXiv:0812.2763) |g(Source redShlft)

Eearth/Eo



Propacation of extraaalactic protons
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Propacation of extraaalactic protons
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'Dip’ Model

(Berezinsky et al.)
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’Ankle’ Model

(z.B. Bahcall&Waxman 2002, Hillas 2005, Wibig&Wolfendale 2007)
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Propacation of extraaalactic Nuclei
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’Mixed Composition” Model

(Allard et al. 2005, 2008)
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Comparison of models
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Photons and Neutrinos

in sources or during propagation (cosmogenic):
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3 Airshower measurements

fluorescence telescopes:

e longitudinal development
e calorimetric

o 7= 13%

surface detectors

e lateral distributions
e particle densities
o 7~ 100%
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EVIDENCE FOR A PRIMARY COSMIC-RAY PARTICLE WITH ENERGY 10% evT

John Linsley
Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
(Received 10 January 1963)

Analysis of a cosmic-ray air shower recorded point marked “A,” assuming only (1) that shower
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scintillator array Volcano Ranch, E ~ 1.0 - 10%° eV
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DETECTION OF A COSMIC RAY WITH MEASURED ENERGY WELL BEYOND THE
EXPECTED SPECTRAL CUTOFF DUE TO COSMIC MICROWAVE RADIATION
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ABSTRACT

We report the detection of a 51 Joule (3.2 + 0.9 x 102° eV) cosmic ray by the Fly’s Eye air shower detector
in Utah. This is substantially greater than the energy of any prevnously reported cosmic ray. A Grelsen-
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fluorescence detector Fly’'s Eye, E = 3.2 £ 0.9 - 10%° eV



The GZK puzzle

AGASA (scintillator) HiRes (fluorescence)
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(M. Takeda et al., APP 19 (2003), 447) (T. Abu-Zayyad, APP 23 (2005) 157)



The Pierre Auger Oeservatory

Colorado, USA Mendoza, Argentina
(in planning) - S (Auger South)

» 18 countries, 476 scientists

» 6 institutes and 80 scientist from Germany
(RWTH Aachen, MPI Bonn, Uni Hamburg, 3xKIT,
Uni Siegen, Uni Wuppertal)



The Pierre Auger Opservatory
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> area: 3000 km?

» 4 fluorescence detectors (30° x 180°)

» 1663 water Cherenkov detectors, spacing 1.5 km
» data taking since 2004, completed in 2008



The Pierre Auger Opservatory

> area: 3000 km?

» 4 fluorescence detectors (30° x 180°)

» 1663 water Cherenkov detectors, spacing 1.5 km
» data taking since 2004, completed in 2008



Telescope Array (Utah, USA)

> area: 750 km? (~ 0.25 Auger)

» 3 fluorescence detectors (30° x 120°)
» 507 scintillators, spacing 1.2 km

» completed in 2008



Telescope Array (Utah, USA)

> area: 750 km? (~ 0.25 Auger)

» 3 fluorescence detectors (30° x 120°)
» 507 scintillators, spacing 1.2 km

» completed in 2008




Hyrrid Measurement of Air Showers in Aucer

b 1 =
Loma Amarilla E & Losteones 3,0 f
= ~®- Los Morados : 5
Coihueco__.: £ 6
s g "
SRS = WV B d2 OXmax < 20 g/cm2
R a
el £ 500 Asys ~ 15 g/cm2
Los Morados < 10
= < Xmax |
Los Leones Xmax
6
1000f
5 10'F N
g F X2/ NDOF: 16.769/ 16 oE
2. cal = [ ¢ dX
g 10° ax
5 F
107 L UE/E ~8%
E 1500| Asys ~22%
0 &
g ITETY AT NETTI F A ATTL I
17 0 10 20 30 40 50 60

I L L L L
& =nn 1000 1500 2000 2500

1000 Esurface= (Slooo7 9) (R. Ulrich, APS meeting 2010)



Calieration of Surface Detector Eneray
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Auger and HiR es Eneray Spectrum
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Auger and HiR es Eneray Spectrum
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Comparison to UHECR. Propagation
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GZ K-Sphere
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Particle Astronomy?

intergalactic B-Fields

3D trajectories projected on X-Y plane
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(J. Cronin, TAUP 2003)



Particle Astronomy?

galactic B-field

BSS model deflections of protons E > 50 EeV

z [kpc]

(colors: B-field [uG])

(gray scale: Auger South acceptance)



Anisotropy Studies

» E >55EeV > exploratory scan: 9 of 14 correlate
> correlation with VCV AGNs » independent test sample: 9 of 13
correlate

0 <3.1° D <75 Mpc i )
» not confirmed by HiRes

» isotropy excluded at 99% C.L. (APP 30 (2008), 175)

(Auger, Science 318 (2007) 938)




Anisotropy Studies - Update

data up to 31 March 2009
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binomial probability for isotropy:
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(paper in preparation)



Composition and Lonaitudinal Profiles
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Composition and Lonaitudinal Profiles
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Composition and Lonaitudinal Profiles
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Composition Studies with Mmax
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Composition Studies with Mmax
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Caveat: Hadronic interactions
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Search for Photons
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Search for Neutrinos

top of atmosphere

incident tau decay
neutrino tau

CC interactions
in Earth

Muons
decay point
of lepton tau

Electrons & photons

(D. Gora et al., ICRC09)



Search for Neutrinos

1 10°
W E GLUE'04
%t [ Auger differential FOR;E 04
° .
310% - \ |
S - . \ .a
= E L
= Y M -
s L &- B o
W g : .
El\ oD
............. .. o
NI ¢
N
ANITA-lite
- Baikal
- RICE'06
17k AMANDA _\
- Auger integrated
10°
GZK neutrinos
Evnd vl ol vl @0l o] e o ol il o il 1l
10 10 108 102 102 102 10%

Neutrino Energy [eV]

(Auger, Phys.Rev. D79 (2009) 102001)



'Super—-Hyrrid measurements at Aucer South

‘ High Elevation Auger Telescopes (HEAT) ‘

Auger Engineering
Radio Array (AERA)

» fluorescence
» water cherenkov

» 30 m? muon counters
(3 m under ground)

» radio antennas
» area 24 km?

‘Auger Muons and Infill for the Ground (AMIGA) ‘




Northern Site of the Pierre Aucer Orservatory
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www.auger.org/admin

Comparison of Exposures
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Example: Events E>55 EeV, t=IO years

Auger South, N=270 Auger North, N=1890

9

simulation with sources ~ VCV, BSS and protons

» full FD coverage, t = 10 years, 7 = 13%
—South: 35 events above 55 EeV
—North: 246 events above 55 EeV



Conclusions

Major progress in the last years:
» unambiguous observation of flux suppression at UHE
» photon limits — top-down models disfavored
» evidence for anisotropy within the GZK sphere
» evidence for mixed particle composition

Questions for the next decade:
» maximum energy of sources?
» distribution of sources?
» galactic and extragalactic magnetic fields?
» hadronic interactions at ultrahigh energies?





