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Galactic Magnetism

NGC891, M. Krause MPIfR

M51, R. Beck (MPIfR), A. Fletcher (Newcastle Univ)

E. Freeland, www.astro.wisc.edu

M51

O(µG) large-scale coherent fields! uB ≈ uturb ≈ uCR 1/41



Proto-Galactic?

collapse of proto-galactic field & 0.1 pG

Howard&Kulsrud A&A 1990

but:
• winding problem (Prot ≈ 0.2 Gyr at r�)
• decay of field in turbulent diffusion O(108yr)

shearing by differential rotation

Sofue 1990 2/41



Dynamo Action?

Galaxy simulations:

Auriga, Pakmor+MNRAS17

stellar density gas density magnetic field

IllustrisTNG, Marinacci+MNRAS17
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Effect of Galactic Magnetic Field on Cosmic Rays
(anisotropic) diffusion of low energy cosmic rays

Merten+JCAP17

deflection of ultrahigh-energy cosmic rays

D. Harari

4/41



Observational Tracers of the Astrophysical Magnetic Fields

composite arXiv:1302.5663 & www.nrao.edu

and:

• starlight polarization
• polarized dust emission
• Zeeman effect

5/41



Modeling the Coherent Galactic Magnetic Field (GMF)
Aim: Describe large-scale structure of GMF with simple parametric forms

Observables:

adapted from Hasegawa+13 and Pelgrims+18

Popular GMF Models:
S97 Jaffe10∗ PT11 JF12 Planck16 TF17∗∗

parameter fit 7 3 3 3 7 3

extragalactic RMs 7 3 3 3 7 3

polarized synchrotron 7 3 7 3 3 7

polarized dust 7 7 7 7 3 7

∇B = 0 7 7 7 3 7 3

Stanev ApJ97, Jaffe+ MNRAS10, Pshirkov+ ApJ11, Jannsson&Farrar ApJ12, Planck Coll. A&A16, Terral&Ferriere A&A17 ∗ only disk field ∗∗Galactic plane excluded (|b| > 10◦) 6/41
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Extragalactic Rotation Measures (PT11, JF12)
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Extragalactic Rotation Measures 2023
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 2012≥misc 

Anderson+15 (ATCA)

Kaczmarek+17 (ATCA)

Betti+19 (VLA)

Schnitzeler+19 (S-PASS/ACTA)

Shanahan+19 (THOR)

Ma+20 (VLA)

Mao+20a (CPGS)

Mao+20b (CPGS)

Riseley+20 (POGS)

Livingston+21 (ATCA)

Van Eck+21 (CPGS)

O'Sullivan+23 (LoTTS)

θ = θ0 + RMλ2

7/41



2023 RM Sky
RM ∝

∫ observer
source B‖(l)ne(l) dl

53 773 RMs total, 47 054 unique objects, 44 857 after outlier rejection 8/41



Foreground: HII Regions
EM ∝

∫ observer
source ne(l)

2 dl
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Foreground: HII Regions
EM ∝

∫ observer
source ne(l)

2 dl
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Polarized Synchrotron Emission
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WMAP Planck

• antenna temperature: Tsyn ∝ ν−(p+3)/2 ≡ νβS
• electron spectral index p: ∼ 2 at source, ∼ 3 after cooling
• βS ∼ −3→ Tsyn(20 Hz)/Tsyn(30 Hz) ≈ 3.4

10/41



Polarized Synchrotron Emission

WMAP9 Planck R3.00 difference

Q

U

PI

calibration uncertainty? cosmic-ray spectral index?

• Stokes Paramters
Q/U ∝

∫
B2
⊥ ncre dl

• projected mag. angle
ψ = 1

2
atan

(
U
Q

)
+ π

2
• polarized intensity:

PI2 = Q2 + U2

11/41



Combined WMAP-Planck Polarized Emission

12/41



Combined WMAP-Planck Polarized Emission

12/41
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Thermal Electron Models

112 pulsar DMs 189 pulsar DMs

DM ∝
∫ observer

source ne(l) dl

Cordes&Lazio arXiv:0207156

Yao, Manchester & Wang, ApJ 2017 13/41



Cosmic-Ray Electron Model
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9

DRAGON calculation constrained by local lepton flux and D0/H from B/C https://github.com/cosmicrays/DRAGON 14/41

https://github.com/cosmicrays/DRAGON


Cosmic-Ray Electron Model
• D0/H = const from B/C
• halo half-height H currently not

well constrained Weinrich+20, Evoli+20, Maurin+22

→ large uncertainty in vertical ncre profile!
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homogenous and isotropic diffusion D0 ∝ Rδ (rigidity R)
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Parametric GMF Components
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cf. Jansson&Farrar ApJ 757 (2012) 14
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New Disk Field Model
previous “wedge”-model (e.g. JF12):
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smooth spiral disk field:
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• divergence-free Fourier-expansion of Bφ(r) at reference radius
• avoids radial discontinuities
• free pitch angle and “magnetic arms” (number of Fourier modes)
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Halo X-Field

JF12 Ferriere&Terral14 UF23
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• fix JF12 discontinuities at z = 0 and transition to θX = 49◦
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RM and Q&U of “base model”

disk toroidal poloidal total

RM: + + =

Q: + + =

U: + + =

19/41



Data and Model
disk + toroidal + poloidal = total data

RM

Q

U

• 6520 data points
• 15-20 parameters
• typical reduced χ2/ndf = 1.2...1.3, depending on model variation

20/41



Data and Model χ2/ndf = 7923/6500 = 1.22

data model pull

RM:( − )/σRM
=

Q:( − )/σQ
=

U:( − )/σU
=

21/41



Model Variations
8 variations (subset giving the greatest diversity of CR deflection predictions):

name variation χ2/ndf
base fiducial model 1.22
xr radial dependence of X-field 1.30
spur replace grand spiral by local spur (Orion arm) 1.23
ne change thermal electron model (NE2001 instead of YMW16) 1.19
twist unified halo model via twisted X-field 1.26
nbcorr ne-B correlation 1.22
cre cosmic-ray electron vertical scale height 1.22
syn use COSMOGLOBE synchrotron maps 1.50
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Magnetic Pitch Angle
• fitted magnetic pitch angle in disk (11± 1)◦ (error dominated by ne)
• pitch angle of local arm (11.4± 1.9)◦ (fit of HMSFR with parallaxes)

Reid+ApJ19

van Eck+ApJ15
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.]

pitch angle of spiral arms [deg.]

8 spiral galaxies
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Local Spur or Global Spiral?
“base” “spur”

→ both models describe data equally well!
24/41



Results – Striation or Correlation?
Longstanding problem: B(syn) < B(RM)

anisotropic/orderd/striated b?

“base”

Jaffe+10

Laing MNRAS80

anti-correlation b-ne (pressure equ.)?

“nbcorr”

B

ne ne ne ne

line of sight
Beck+03

→ both models describe data equally well! 25/41



Magnetic Halo

• poloidal field needed to describe data
∆χ2 > +2100 wrt to no X-field

• N-S reflection anti-symmetric
∆χ2 > +1700 wrt to symmetric

• same field strength in N/S hemisphere
• poloidal halo: ∆B = (0.1± 0.1) µG
• toroidal halo: ∆B = (0.2± 0.4) µG

• same radial extent of toroidal halo in N/S
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Unified Halo Model
• evolve X-field via ideal induction equation ∂tB = ∇× (vrot ×B)

• radial and vertical shear of Galactic rotation generates toroidal field

• no separate X- and torodial halo needed! → 6 instead of 10 free halo parameters

• “twisting time”: t = 54.7± 1.1 Myr→ effective time (steady state when including dissipation?)

Galactic rotation curve
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Cosmic-Ray Deflections
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D. Harari

• Larmor radius of charged particle in B-field

r = 1.1 kpc
R/1018 V

B/µG

• rigidity

R =
cp

eZ

e=c=1
=

E

Z

• typical GMF deflections (JF12)

θcoh ∼ 3◦
(

R

1020 V

)−1
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Deflections at 20 EV (base model) (backtracking)
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Deflections at 20 EV (model ensemble and JF12) (backtracking)

JF12

twistX

synCG

base

spur
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expX

neCL

nebCor
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Deflections at 20 EV (backtracking)
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Summary
New Model(s) of the Coherent GMF
• full-sky RM data
• latest synchrotron sky maps
• improved auxillary models (ne and ncre)
• smooth disk-field model
• unified halo model

Main Results:
• JF12 dipolar X-field robust  dynamo?
• magnetic pitch ∼ spiral pitch  coherent?
• local spur (Orion) or Grand Spiral?
• ne −B anti-corr. is alternative to striation
→ larger B estimates

• GMF model ensemble→ uncertainties for
deflection, diffusion, axion conversion,...

Outlook:
• turbulent field using Isyn + variances
• pulsar RMs, low-frequency QU, dust pol., ...
• foreground modeling local bubble, loops,...
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SD0116: 2.2 MIP at 3.6 km

SD0217: 21.8 MIP at 2.3 km

SD0316: 19.2 MIP at 2.4 km

SD0317: 78.6 MIP at 1.5 km

SD0318: 216.9 MIP at 1.3 km

SD0416: 7.3 MIP at 2.3 km

SD0415: 4.9 MIP at 3.4 km

SD0417: 393.6 MIP at 1.1 km

SD0418: 5581.2 MIP at 0.3 km

SD0516: 12.1 MIP at 2.5 km

SD0419: 347.5 MIP at 1.2 km

SD0517: 211.1 MIP at 1.4 km

SD0518: 3548.4 MIP at 0.7 km

SD0519: 313.0 MIP at 1.2 km

SD0616: 3.6 MIP at 3.1 km

SD0617: 32.9 MIP at 2.2 km

SD0618: 96.8 MIP at 1.7 km

SD0615: 1.8 MIP at 4.1 km

SD0619: 40.3 MIP at 1.8 km

SD0718: 9.7 MIP at 2.7 km

SD0620: 8.2 MIP at 2.6 km

SD0720: 13.4 MIP at 3.2 km

SD0820: 4.6 MIP at 3.9 km

• E =
(
2.44± 0.29 (stat.)+0.51

−0.76 (syst.)
)
×1020 eV

• if Fe: Enom = (2.12± 0.25)× 1020 eV
• Fe at −1σsyst.: Elow = (1.64± 0.19)× 1020 eV
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Simplest Assumption: Fe Nucleus from Standard Accelerator
(Rmax ∼ 1018.6−18.7 V)

TA 14-year SD spectrum, Kim et al, EPJ Conf 283 (tm2023) 02005

Peters Cycle:

proton He

CNO Fe

Pierre Auger Coll. 2023

Photodisintegration in source:

MU, Farrar, Anchordoqui PRD15 34/41



Propagation of Fe in Extragalactic Photon Fields
• horizon between 8 and 50 Mpc
• factor 240 uncertainty source volume!
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Arrival Direction

Enom = (2.12± 0.25)× 1020 eV Elow = (1.64± 0.19)× 1020 eV
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localization uncertainty: 6.6% of 4π or 2726 deg2

uncertainty of coherent deflection, random field, Galactic variance, TA energy scale, statistical uncertainty of E
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Distribution of galaxies up to D=150 Mpc
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Elow − 2σ, D0.1=72 Mpc
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Elow − 1σ, D0.1=42 Mpc
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Elow, D0.1=25 Mpc
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Enom, D0.1=10 Mpc
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Amaterasu Particle
• simplest assumption: Fe nucleus
• localization uncertainty (using UF23 ensemble):
→ direction within 2726 deg2 (6.6% of 4π)

• horizon between 8 and 50 Mpc
• accurate energy essential! (both, stat. and syst.!)
• none of the “usual suspects” within localization

uncertainty
• starburst galaxy NGC 6946? (flux proxy is 10% of

NGC4945 and M82)
• Andromeda (M31)?
• transient event in an otherwise undistinguished

galaxy?
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