Mass Sensitive Observables of the
Pierre Auger Observatory

... and their possible implications

- M. Unger foé.thé .Pier_re Auger C(_)IIabbration



Overview

currently used in Auger:

FD: Xmax
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— three observables that are robust wrt. muon number

(see A. Yushkoy, this afternoon, for N,, in Auger)

under study:

» FD: shape of profile

» SD: shower front curvature, magnitude of rise-time, muons
from shower universality, ...



Xmax Analysis

Goal: determine properties of Xmax distribution in the

atmosphere (not in detector)

» data base cuts
» clear atmosphere
» good calibration
» no clouds
» quality cuts
» Xmax Observed
» o(Xmax) <40 g/cm
» minimum viewing angle
» fiducial cuts
» distance to hybrid station
— hybrid trigger 100%
» large field of view
— unbiased sampling of Xnya distr.

(see poster by V. De Souza)
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Cross-checks with 'multi-eye’ Events

event 10071896, 08/15/10

® data: RMS=19+1.1 g/cm
— MC: RMS=19+0.1 g/cm’
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(Xmax) and RMS
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(Xmax) and RMS
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(Xmax) and RMS
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(Xmax) VS. RMS
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(Xmax) VS. RMS
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(Xmax) VS. RMS
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Xmax Distributions
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Xmax Distributions p, Fe, 50:50
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Rise Time Asymmetry

815 (imitis), PMIT 1t 1272m

Signal [VEM peak]
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Dova et al., APP31 (2009), 312



Muon Production Depth

» muon-rich stations:

» events with zenith angle 55-65 deg.
» stations with core distance >1.8 km

» projection of signal time traces to axis
» sum up stations

— distribution of muon production heights

» distance to slant depth conversion
» fit with Gaisser-Hillas

— maximum at X/ax

Cazon et al., APP21 (2004), 71



SD observables vs. Xmax

rise time asymmetry muon production depth
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— estimators of the longitudinal air shower development
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sec(f)max and Xhax VS. energy
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sec(f)max and Xhax VS. energy
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Astrophysics?
D. Allard, arXiv:1111.3290
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» Peters cycle: Epa = Z - (4-10%8) ev
» composition mix as low energy galactic
» hard spectral index at the sources (5 = 1.6)

(see also V. Berezinsky yesterday and A. Taylor tomorrow afternoon)
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Astrophysics?

X, [lglcm?]
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Hadronic Interactions? PRDB3 (2011), 054026

1018 to 10 18.5 eV above 10 19.4 eV
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(see R. Ulrich this afternoon) “



Hadronic Interactions?

1018 t0 10185 ev

s - 2
i iiﬁg N, =55.8%2.3 glcm
S
101 # i
= F f
S
S
s | }{
f {
x 'F
3z E
: l ]
zZ
0t H\ | | | H | \l
500 600 700 800 900~ 1000 1100 1200
Xmax [g/cm?]
Equivalent c.m. energy \'s,, [TeV]
10" 1 10 10?
E ?\ ? ? X
700 ostev_zastey v setev
Fo nemetalio7s
F 2 sohneraliore
E gool- v Balvusaiisetal 1984
o [ o Miekeetal 1004 _
® F 4 Hondaetal 1999
s L
5 O Knurenkoetal. 1999 &
g soof- © &
S [ 0 Agetactal2000
S ool + Aelictal 2009
£ 400 Z
8 F —@ miswork (“,ﬁ" - - - QGsJewle
4 C <} - QGSJell3
9
8 . F — - syliz1
g 300 v
5} :,,ggfg $ weees Epos 199
nd ! L ! L ! ! L L L
T8 102 10® 10% 10® 10® 107 10° 10° 10®

Energy  [eV]

(see R. Ulrich this afternoon)

PRD83 (2011), 054026

above 10194 eV
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Outlook: Composition from 0.1 to 1 EeV

Existing tank array 1500m
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» HEAT: stable data taking since 1.5 years
» Muon Counters: start physics data taking with 6 stations this month
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Outlook: Composition above the Flux Suppression

extrapolation of stat. uncertainty above 57 EeV
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» and/or significant improvement of observables

better modeling of 4+ and em component in trace?
multicomponent analysis?

additional information from radio/GHz?
scintillators, RPCs, ... ?

v

v VvYyy

16



