EAS studies of cosmic rays
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Overview

= Towards the ankle .
-~ ="Measurements of the UHECR energy spectrum
.UHECR composition studies -~ -
= Arrival directions of UHECRs
= New techniques and future experiments
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Towards the Ankle



Results from Tunka133
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Spectrum and X, from Tunka133
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Spectrum and X, from Tunka133
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(In A) Tunka vs. Yakutsk
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Flux dIKdE x E*® # (m* s sr GeV'™%)
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Update of GAMMA spectrum

three years more data
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Evidence for a ’heavy knee’ by KASCADE-Grande
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Evidence for a ’heavy knee’ by KASCADE-Grande
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Evidence for a ’heavy knee’ by KASCADE-Grande
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Evidence for a ’heavy knee’ by KASCADE-Grande
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'’Low energy’ Enhancements

Auger towards 10'7 eV: §er
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UHECR Energy Spectrum



Comparison of Exposures
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TA Surface Detector Spectrum

shower size to E from MC renormalized using FD (1/1.27)
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TA Surface Detector Spectrum
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TA Surface Detector Spectrum

excellent agreement with HiRes (by construction)
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Auger Vertical Spectrum
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= constant intensity cut
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Auger Vertical Spectrum
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Auger Vertical Spectrum
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Auger Vertical Spectrum
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Comparison of spectral features
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Comparison of Spectra

E[eV]
~ 20" g 2t AP 20
= [ I I
g C
% 18.5? . .- ]
‘% B ® . . T e :
‘Tl) 18; ® o o o ©® LY P +
N : . | |
£ C 2
S 1751 ¢
‘%Lu - _e_ Auger ICRC1L
5 17 = TA2011 I ]
o B
S C I
16_57—‘ I S R P P
18 18.5 19 19.5 20 20.5
IoglO(E/eV)

energy scale difference of ~ 20%?

23



Energy Scale Uncertainties

Auger [R. Pesce, icrc1 160] Telescope Array [D. Ikeda, icrc1264]
calibration 9.5% calibration 10%
reconstruction 10% reconstruction 10%
atmospheric 8% atmospheric 11%
fluorescence yield* 14% fluorescence yield** 11%
invisible energy' 4% invisible energy
tot. quad. sum 22%  tot. quad. sum 21%

total syst. of energy scale difference
Jsys(EAuger - ETA) = 30%
without fluorescence yield:

Usys(EAuger - ETA) =24%

*yield: Nagano, spectrum: AIRFLY **yield: Kakimoto, spectrum: Bunner TQGSJet mixed TTQGSJet proton
24



Fluorescence Yield Measurement by AIRFLY

normalization:

* method 1: fluorescence to
Cherenkov ratio

= method 2: laser + NIST probe
— total uncertainty: 4%!

Yair = 5.67 £ 0.07(stat.) £ 0.21(syst.) photss;/MeV

Auger: 5.05 photss,/MeV, i.e. energy scale goes down by 10%

[M. Bohacova et al., icrc1159]
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Fluorescence Yield World Average
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IT 8™ Air Fluorescence Workshop
Karlsruhe, Germany
12. - 14. September 2011

Ultra-high energy cosmic rays are measured using the fluorescence technique by
several air shower experiments. For a proper reconstruction of the extensive air
shower, the yield of the air fluorescence and its dependence on particle energy and
atmospheric parameters have to be known. To push this field forward and expand
our knowledge about air fluorescence, this series of workshops was started in 2002.

Kb st o ehciony

The main goal of this workshop is 1o continve the
fruitul discussions of the past nine years between
Scientists performing air uorescence studies and air
Shower analyses. The practical benefis of this meeting

better comparison of UHECR measurements will be a
break through n astroparticie physics.

S

= A Uricn TUMinchen

Local Organizing Committee
= B. Keihaver (Chai)

= S Bucher

= REngel

.

= D Woehee

For further information
httphwew Keota ki

To contact the
Bafw2011@kcota kitodu

ind registration visit
duBatw2011

Bt

26



Improved calibration techniques

first tests in Colorado:
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= stable solid state laser s
= automatic laser calibration oo

T(z=4.5 km) AMT

* Raman LIDAR
to be installed at Auger in 2012

[L. Wiencke [Auger Coll.], icrc741]
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Improved calibration techniques
linac, electron light source (ELS) at TA

T. Shibata [TA Coll.], icrc1252




Improved calibration techniques
ELS data
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MC Energy Scale

TA: dominated by emag. comp. Auger Inclined: ;~-dominated
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UHECR Composition
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lllustration of FD Acceptance Bias

= Parent Distribution
—— Fiducial Selection
—— Visible Range
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lllustration of FD Acceptance Bias
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LT —— Parent Distribution
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[R. Ulrich [Auger Coll.], icr0946J
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lllustration of FD Acceptance Bias

== Parent Distribution
—— Fiducial Selection
—— Visible Range
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Illustration of FD Acceptance Bias
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lllustration of FD Acceptance Bias

Fiducial Range
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Xmax Measurement Strategies

Auger TA/HiRes
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= correct rec. bias (~ 5 g/cm®) = apply same cuts in data/MC
= apply fiducial volume cuts = compare biased data to
= compare unbiased data to biased MC
simulations at generator level
[(J. Bellido [Auger Coll], |CRC09] [A. Tameda [TA Coll], icrc1zes}

lines: input MC, dots: output after full detector sim. rec. and analysis



Longitudinal EAS Development with Auger FD
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Longitudinal EAS Development with TA Stereo FD
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Xmax Distributions
Auger
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Longitudinal EAS Development with Auger SD

muon production depth
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— reach to higher energy
— syst. independent of FD
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Longitudinal EAS Development with Auger SD

muon production depth f-dep. of risetime asymmetry
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— reach to higher energy
— syst. independent of FD
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Evolution of muon density by Yakutsk
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Xmax predictions

Equivalent c.m. energy \'s,, [TeV]
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UHE Photons
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Photon Search with TA (SD)

proton-induced EAS gamma-induced EAS
/
/
muons /.{ /
EM cascade
-~ /
EM cascade
4
muons _-
AN
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[G.l. Rubtsov [TA Coll], icrc1266j
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Photon Search with Auger (Hybrid)
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[M. Settimo [Auger Coll.], icrc393]
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Photon Search Results
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Arrival directions
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Search for Anisotropies in the EeV range

Galactic neutron sources?
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[B. Orfeuil [Auger Coll.], icrc713J

Right Ascension Modulation?
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Search for Large Scale Anisotropy with TA

10 EeV
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= density map using 2MASS
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57 EeV

[P. Tinyakov [TA Coll ], icrc131 7}

47



UHE Correlation with AGNs within GZK-sphere?

VCV catalogue, E> 57 EeV, z<0.018, distance < 3.1 deg.

Auger TA
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UHE Correlation with AGNs within GZK-sphere?

VCV catalogue, E> 57 EeV, z<0.018, distance < 3.1 deg.

Auger TA
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UHE Correlation with AGNs within GZK-sphere?

VCV catalogue, E> 57 EeV, z<0.018, distance < 3.1 deg.
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UHERSs from CenA?
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[ E.M. Santos [Auger Coll., icchGBJ

... or Virgo?

-180

{G\acim\&Semikoz. icrc171 ]
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New Techniques
R&D Projects
Future Experiments
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Radio-Detection of EAS

[J. Kelley [LOFAR Coll.], icrc916}

[J. Kelley [Auger Coll.], icrc556] [B. Revenu [Auger Coll.], icrc845] 53



Radio-Detection of EAS

Main production mechanism: geomagnetic effect, i x B

’Second order” effects:

charge excess:

core shifts in CODALEMA
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V. Marin [CODALEMA Coll.], icrc942]

refractive index, Cherenkov
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M. Ludwig et al. icrc149
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K. de Vries et al. icrc139 54



First MHz Composition Sensitivity Studies
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Auger 'Super Hybrid’ (radio self-triggered!)
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LOFAR CR event

Footprint of CR event 20110714T174749.986Z
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Microwave-Detection of EAS

isotropic emission of molecular bremsstrahlung
—’FD’ with 100% duty cycle?
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Microwave-Detection of EAS
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Microwave-Detection of EAS

MAYBE (Microwave Air Yield Beam Experiment) at ANL
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Radar Detection of EAS at TA

Distant
Transmitter

Power [dBm]
8

-100
[J. Belz [TARA Coll], icrc1314] -
{ H. Takai [TARA Coll], icrc1315 J 40
-160

Incident Wave

Shower Detector

Scattered Wave

T

RCRS Detector

Signal-to-Noise, 20 kW TX

u) T T T T .
le20 eV
a2 lel9 ev ]
100 105 10 15 120
Time [us]

61



JEM-EUSO Optics Prototype

Atmosphgre
\

Cherenkov

[J.H. Adams [JEM-EUSO Coll], icrc1 100]
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JEM-EUSO Exposure

using Universitetsky Tatiana satellite data

Observatory Aperture  Status Start Lifetime Duty Annual Relative

km? sr cycle Exposure to Auger
km2 sr yr

Auger 7,000 Operations 2006 4 (16) 1 7000 1

TA 1,200  Operaions 2008 2 (14) 1 1,200 0.2

Tus 30,000  Developed 2012 5 0.14 4,200 0.6
N\

JEM-EUSO 430,000 Design 2017 5 0.14 60,000 9 \

(E~10= eV)

JEM-EUSO 1,500,000 Desin 2017 5 0.14 200,000 \'ity

(highest energies)

Tilted mode 35°

= 2013: launch JEM-EUSO balloon from Kiruna
= 2017: launch to ISS using Japanese HII Transfer
Vehicle (HTV)?

[T. Ebisuzaki [JEM-EUSO Coll], icrc120J




Shower Observation from ISS




Shower Observation from ISS
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Pre-Announcement

UHECR 2012

International Symposium on
Future Directions in UHECR Physics

CERN
February 13-17, 2012

Follow-up of Nagoya Symposium 2010
Scope: Discuss science case for next generation UHECR observations,
ground based Giant Detector and Space Observatory, technological
challenges, related R&D works

Contacts: M. Fukushima (fukushim@icrr.u-tokyo.ac.jp)
K.-H. Kampert (kampert@uni-wuppertal.de)
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Conclusions

my subjective highlights :
* evidence for a 'heavy knee’ by KASCADE-Grande
* high quality data from Telescope Array

= refinement of Auger measurements with larger statistics
and new methods

situation at ultra-high energies :
= good agreement on spectral features of spectrum
= persistent Auger anisotropy in UHE arrival directions

* new data on composition, but still inconclusive
— need to find a way for direct comparison of
measurements from different experiments to
judge level of (dis-)agreement.
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