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Light Production in UHECR air showers
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simulation: FDSim (L. Prado et al., NIM A545 (2005), 632)



Light Production in UHECR air showers

Note:

» Fluorescence yield oc dE/dX
» Cherenkov yield oc Ne

but:
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Traditional ansatz
(R. M. Baltrusaitis et al., NIM A240 (1985), 410)

Iterative procedure:

step 1. assume no Cherenkov contribution and calculate Ng
step 2: calculate Cherenkov contribution

step 3. subtract Cherenkov contribution from light at diaphr.
step 4: recalculate Ne and go to step 2

Problems:
» iteration stops if Ne < O after step 3
» slow convergence
» calculation of statistical uncertainties?



Fluorescence and direct Cherenkov light

direct relation between light flux n; at time
ti and energy deposit dE/dX ; at depth X;

nd = Y{ + YE(B)/ai] (dE/aX)

light yields

Y;: Cherenkov and fluorescence yield
«j: average dE/dX per electron

Ti: light attenuation to detector

ej: detector efficiency

(wave length dependence not shown for clarity)
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Fluorescence and direct Cherenkov light

direct relation between light flux n; at time
ti and energy deposit dE/dX ; at depth X;

n, d 0 ... 0 (dE /dX ),
: o . 0 :

n; = d; (dE/dX)i
M/ g 0 0 ... 0 d \(dE/dX),

— simple diagonal matrix equation



Scattered Cherenkov light

scattered Cherenkov light at detector:

n = D Y Jox T (dE /dX )i
k

Cherenkov beam

Yi: Cherenkov yield

ay: average dE/dX per electron

Tyi: light attenuation along track

T;: light attenuation to detector

ej: detector efficiency

(wave length dependence not shown for clarity)
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scattered Cherenkov light at detector:
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Scattered Cherenkov light

scattered Cherenkov light at detector:

scattering to detector
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Scattered Cherenkov light

scattered Cherenkov light at detector:

n, S11 0 L 0
S12
il = Si
o Slénfl) . .
s in 2n - (n—=1)n

— triangular matrix equation

(dE/dX )1
(dE/:dX)i

(dE /dX )



Total light at detector

sum of direct and scattered light:

Ny S11 + d]_ 0 A 0 0 (dE/dX)]_
: S12 e 0 :
Ni - sii + d; (dE/dX)I
: S1(n—1) :
Nn tot S1n Son L. S(nfl)n Spn + dp (dE /dX)n
in short:

— triangular matrix equation



Solution of Cherenkov-Fluorescence equation

Cherenkov-Fluorescence equation:

n=Cw

is solved by matrix inversion

w=C"n

Solution has covariance matrix
Ve=C 1V, (CT)™

— correlation due to Cherenkov beam



Conclusions
new algorithm for longitudinal profile reconstruction:

» Cherenkov light is signal, not background

» light at detector depends linearily on shower size
» linear least square solution

» robust, unbiased and fast

additional effects to be considered:
» wave-length dependence of fluorescence and Ch.-light
— 2Ny =3 Chwy
» extrapolation outside field of view
— four parameter Gaisser-Hillas fit

» age-dependence of Cherenkov light production
— one iteration needed

see proceedings for further details!



