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UHE ExposureUHE Exposure
Auger Anisotropy ICRC17: 9.0×104 km2 sr yr

Auger Spectrum ICRC17: 6.7×104 km2 sr yr

TA Spectrum ICRC17:
0.8×104 km2 sr yr

AGASA
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S1000 Esurface = f (S1000, θ)

Hybrid Detection of Air ShowersHybrid Detection of Air Showers
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S1000 Esurface = f (S1000, θ)

Energy CalibrationEnergy Calibration
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Energy SpectrumEnergy Spectrum
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Combined Energy SpectrumCombined Energy Spectrum
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S1000 Esurface = f (S1000, θ)

Mass CompositionMass Composition
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S1000 Esurface = f (S1000, θ)

Mass CompositionMass Composition
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Average Xmax Fluorescence DetectorAverage Xmax Fluorescence Detector
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Average Xmax Fluorescence and Surface DetectorAverage Xmax Fluorescence and Surface Detector

E [eV]
1710 1810 1910 2010

]2
 [g

/c
m

〉
m

ax
X〈 

640

660

680

700

720

740

760

780

800

820  stat.±Auger FD ICRC17 (prel.) 

 stat±Auger SD ICRC17 (prel.) 

 sys.±

[12 of 30]



Average Xmax and Xmax-fluctuationsAverage Xmax and Xmax-fluctuations
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(p-He-N-Fe)-fit of Xmax Distributions(p-He-N-Fe)-fit of Xmax Distributions
FD data: (compatible with TA distributions, see WG report, V. de Souza et al., CRI167, Tuesday, 14:45)
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FIG. 5: Xmax distribution of the fits for energy bin E = 1017.8�17.9 eV. Results using Sibyll 2.1

are shown in the top row, QGSJET II-4 in the middle row, and EPOS-LHC in the bottom row.

The left column displays results where protons and iron nuclei were used, the central column also

includes nitrogen nuclei, and the right column includes helium nuclei in addition.

data lie between those for protons and iron nuclei but the distributions are too narrow to

accommodate a mixture of the two. Thus we conclude that either the model predictions are

wrong or else other nuclei with shorter propagation length form a significant component of

the UHECR flux that reaches the upper atmosphere.

Adding intermediate components greatly improves the fits for all hadronic interaction

models. EPOS-LHC in particular are satisfactory over most of the energy range. It is

interesting to note that including intermediate components also brings the models into re-
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FIG. 6: Xmax distribution of the fits for energy bin E = 1019.0�19.1 eV. See caption to Fig. 5.

markable agreement in their predictions of the protons and iron nuclei contributions despite

large di↵erences in the remaining composition. This can be seen in the right column of

Fig. 5. All three models give acceptable fit qualities with consistent fractions of protons,

but with distinctly di↵erent predictions for the remaining composition; results of EPOS-LHC

simulations favor a mixture dominated by nitrogen nuclei, while QGSJET II-4 simulation

favor helium nuclei, whereas Sibyll 2.1 modeling leads to a mixture of the two.

A substantial change in the proton fractions is observed across the entire energy range,

which rises to over 60% around the ankle region (⇠ 1018.2 eV) and subsequently dropping

to near-zero just above 1019 eV with a possible resurgence at higher energies. If the ankle

feature is interpreted as a transition from Galactic to extragalactic cosmic rays [14], the

18

 0

 5

 10

 15

 20

 500  600  700  800  900  1000

N

 

Sibyll 2.1

log(E/eV) > 19.5

p = 0.001

 

 

 

 

 

 500  600  700  800  900  1000

 

 

Sibyll 2.1

log(E/eV) > 19.5

p = 0.504

 

 

 

 

 

 500  600  700  800  900  1000

 

 

Sibyll 2.1

log(E/eV) > 19.5

p = 0.592

Fe
N

He
p

Auger

 0

 5

 10

 15

 20

 500  600  700  800  900  1000

N

 

QGSJET II-04

log(E/eV) > 19.5

p = 0.009

 

 

 

 

 

 500  600  700  800  900  1000

 

 

QGSJET II-04

log(E/eV) > 19.5

p = 0.249

 

 

 

 

 

 500  600  700  800  900  1000

 

 

QGSJET II-04

log(E/eV) > 19.5

p = 0.308

 0

 5

 10

 15

 20

 500  600  700  800  900  1000

N

Xmax  [g/cm2]

EPOS-LHC

log(E/eV) > 19.5

p = 0.057

 

 

 

 

 

 500  600  700  800  900  1000

 

Xmax  [g/cm2]

EPOS-LHC

log(E/eV) > 19.5

p = 0.712

 

 

 

 

 

 500  600  700  800  900  1000

 

Xmax  [g/cm2]

EPOS-LHC

log(E/eV) > 19.5

p = 0.695

FIG. 7: Xmax distribution of the fits for energy bin E > 1019.5 eV. See caption to Fig. 5.

proton fraction in this energy range is surprisingly large as the upper limits on the large-scale

anisotropy [15] suggests that protons with energies below 1018.5 eV are most likely produced

by extragalactic sources. In order to accommodate a proton-dominated scenario for energies

above 1018 eV [16], the hadronic interaction models would need to be modified considerably.

The transition to heavier cosmic rays with increasing energy is reminiscent of a Peters

cycle [17], where the maximum acceleration energy of a species is proportional to its charge

Z. However further analysis that takes into account the energy spectrum and propagation

of UHECRs through the universe would be required to confirm this. Composition-sensitive

data above 1019.5 eV will be needed to allow a reliable interpretation of the observed changes

of composition in terms of astrophysical models (see e.g. Refs. [18, 19]).

19
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Combined Fit of Spectrum and Xmax DistributionsCombined Fit of Spectrum and Xmax Distributions
rigidity-dependent cutoff at source: Emax = Rcut Z, power law injection E−γ ,
propagation with CRPropa3, Gilmore12 EBL, Dolag12 LSS
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Introduction Dependence on EGMF Dependence on source evolution Summary and conclusions Backup

Best-fit parameters

Source properties 4D with EGMF 4D no EGMF 1D no EGMF1

γ 1.61 0.61 0.87

log10(Rcut/eV) 18.88 18.48 18.62

fH 3 % 11 % 0 %

fHe 2 % 14 % 0 %

fN 74 % 68 % 88 %

fSi 21 % 7 % 12 %

fFe 0 % 0 % 0 %

Strong influence of the EGMF on reconstructed source properties
Assuming an EGMF leads to softer γ

Dominated by intermediate-mass nuclei
1Homogeneous source distribution, see [A. Aab et al., JCAP 2017, 038 (2017)]
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Combined Fit of Spectrum and Xmax DistributionsCombined Fit of Spectrum and Xmax Distributions
rigidity-dependent cutoff at source: Emax = Rcut Z, power law injection E−γ ,
propagation with CRPropa3, Gilmore12 EBL, Dolag12 LSS
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Introduction Dependence on EGMF Dependence on source evolution Summary and conclusions Backup

Best-fit parameters

Source properties 4D with EGMF 4D no EGMF 1D no EGMF1

γ 1.61 0.61 0.87

log10(Rcut/eV) 18.88 18.48 18.62

fH 3 % 11 % 0 %

fHe 2 % 14 % 0 %

fN 74 % 68 % 88 %

fSi 21 % 7 % 12 %

fFe 0 % 0 % 0 %

Strong influence of the EGMF on reconstructed source properties
Assuming an EGMF leads to softer γ

Dominated by intermediate-mass nuclei
1Homogeneous source distribution, see [A. Aab et al., JCAP 2017, 038 (2017)]
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Searches for Cosmogenic Photons and NeutrinosSearches for Cosmogenic Photons and Neutrinos

p + γCMB → p + π0
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Figure 2: Integral upper limit (at 90% C.L.) for a diffuse neutrino flux of UHE dN/dEν = kE−2 given as
a normalization, k, (straight red line), and differential upper limit (see text). Limits are quoted for a single
flavor assuming equal flavor ratios. Similar limits from ANITAII [8] and IceCube [9] are displayed along
with prediction for several neutrino models (cosmogenic [10, 11, 12], astrophysical [13].)

3.2 Limits to point-like sources of UHE neutrinos

The Earth-skimming channel is very effective at converting the tau neutrinos into exiting tau
leptons when the arrival direction is very close to the horizontal. It can be shown that over 90%
(∼ 100%) of the ES exposure is obtained for zenith angles between 90◦ and 92.5◦ (95◦). As a result
the sky coverage provided by these interactions reaches declinations between −54.5◦ and 59.5◦.
The DG selections enhance the visible declination band towards the south all the way to −84.5◦

covering a large fraction of the sky. The exposure as a function of zenith can be converted to an
average exposure for a given declination integrating in right ascension. It displays strong peaks for
the ES selection close to two extreme declinations apparent in the obtained bounds.

The non-observation of neutrino candidates is cast into a bound on point sources which is
calculated as a function of declination, δ , also assuming a flavor ratio of 1:1:1. The results are
displayed in Fig. 3, for the first time combining the three searches and for data that have an increase
of about seven years of full exposure over previous results [15].

3.3 Targeted searches for correlations with the GW events

The reported detection of gravitational wave events produced by bynary Black Hole (BH)
mergers by the Advanced Ligo Collaboration has triggered a targeted search for coincidence events
that would complement these observations. BH mergers could accelerate cosmic rays to the high-

4
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Constraints on Source Evolution from ν LimitsConstraints on Source Evolution from ν Limits

n(z) ∝ (1 + z)m, z < zmax

UHE neutrinos at Auger Enrique Zas
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Figure 3: Left: Upper limits at 90% C.L. for kPS as a function of the source declination for ES, DGH and
DGL searches as labeled (assuming a single flavor point-like flux of UHE neutrinos dN/dEν = kPSE−2

ν ).
Also shown are the sensitivities for IceCube [16], ANTARES [17] and a combination of both [18]. Note the
different energy ranges.
Right: Constraints on parameter space for cosmological neutrinos in proton models (assuming a power-
law dN/dE ∝ E−2.5) as a function of m (source evolution) and zmax (maximum redshift of the sources)
following [22]. Colored areas represent different confidence levels of exclusion. The region above the black
(white) line is excluded at 90% C.L. by IceCube [9] (Auger) data.

est energies and produce neutrinos provided there are magnetic fields and disk debris from the
progenitor stars [19]. A search has been made for EeV events in the data collected with the Obser-
vatory and correlated in time and position with events GW150914, GW151226, GW170104 and
the candidate event LVT151012. In each case two time windows have been considered to search
for coincident neutrino events. One is of ±500 s about detection time, motivated by an upper limit
to the duration of the prompt phase of Gamma Ray Bursts (GRB) and the second one a single day
after the event, motivated by an upper limit to the duration of GRB afterglows [20].

The directionality of the neutrino exposure makes the effectivity of the search quite dependent
on the event position. Since this position is only known as a broad region of hundreds of square
degrees, the results are given as a function of the event declination. The calculation of the exposure
for each class of events is similar to that obtained for point source searches but the time integral is
now limited to the preselected search window. It is only accounted for to the extent the source is
visible in each one of the three zenith angle ranges considered.

Because of the zenith angle restrictions the visible part of the sky is limited at any instant
as shown in Fig. 4 left. When we consider the short time-window, the 90% C.L. position of
GW150914 has only a marginal overlap with the corresponding sky coverage of the Observatory
for the DGH selection. A resulting bound could only be obtained if the position of the event was
known to be in the overlapping region. The situation with GW151226, GW170104 and LVT151012
is different since there is a substantial overlap between the sky coverage with both with ES and DG
searches and the reported positions, particularly for GW151226 (see Fig 4). No inclined back-
ground showers from cosmic rays were actually observed at all during the 1000 s-wide window
around any of the GW events.

For the one-day period the instantaneous exposure is averaged over a sidereal day GW150914,

5

Emax = 300 EeV
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Hadronic Interactions at UHEHadronic Interactions at UHE
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Hadronic Interactions at UHEHadronic Interactions at UHE Proton-air cross section
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Hadronic Interactions at UHE: 〈ln A〉 compatibilityHadronic Interactions at UHE: 〈ln A〉 compatibility

E [eV]

1710 1810 1910 2010

〉
ln

 A
〈

0

1

2

3

4

5  ICRC 2015max X

 1500 m arrays∆
 750 m arrays∆

p

Fe

He

N

QGSJetII-04

E [eV]

1710 1810 1910 2010

〉
ln

 A
〈

0

1

2

3

4

5  ICRC 2015max X

 1500 m arrays∆
 750 m arrays∆

p

Fe

He

N

EPOS-LHC

E [eV]

1710 1810 1910 2010

〉
ln

 A
〈

0

1

2

3

4

5  ICRC 2015max X

 1500 m arrays∆
 750 m arrays∆

p

Fe

He

N

QGSJetII-04

E [eV]

1710 1810 1910 2010

〉
ln

 A
〈

0

1

2

3

4

5  ICRC 2015max X

 1500 m arrays∆
 750 m arrays∆

p

Fe

He

N

EPOS-LHC

[19 of 30]



Search for Intermediate-scale UHECR AnisotropiesSearch for Intermediate-scale UHECR Anisotropies
Active Galactic Nuclei

• 2FHL AGNs

• flux proxy: Φ(> 50 GeV)

• 17 objects within 250 Mpc

Star-forming of Starburst Galaxies

• Fermi-LAT search list
(Ackermann+2016)

• Φ(> 1.54,GHz) > 0.3 Jy

• flux proxy: Φ(> 1.54,GHz)

• 23 objects within 250 Mpc

Likelihood ratio analysis
• smearing angle ψ
• H0: isotropy
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• H1: (1− f)× isotropy + f× fluxMap(ψ) • TS = 2 log(H1/H0)
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Search for Intermediate-scale UHECR AnisotropiesSearch for Intermediate-scale UHECR Anisotropies

f = 10%, ψ = 13◦

pre-trial∗ p-value: 4× 10−6

post-trial∗∗ p-value: 4× 10−5

post-trial∗∗ significance: 3.9σ

f = 7%, ψ = 7◦

pre-trial∗ p-value: 5× 10−4

post-trial∗∗ p-value: 3× 10−3

post-trial∗∗ significance: 2.7σ
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Observation of Dipolar anisotropy above 8 EeVObservation of Dipolar anisotropy above 8 EeV
Harmonic analysis in right ascension α

E [EeV] events amplitude r phase [deg.] P (≥ r)
4-8 81701 0.005+0.006

−0.002 80± 60 0.60
> 8 32187 0.047+0.008

−0.007 100± 10 2.6× 10−8

significant modulation at 5.2σ (5.6σ before penalization for energy bins explored)
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Dipole in Galactic CoordinatesDipole in Galactic Coordinates
 

0.38

0.46

k
m

-2
 sr

-1
 y

r
-1

-90

90

180 -180

 

0
.3

8

0
.4

2

0
.4

6

km-2 sr-1 yr-1

-9
0

9
0

1
8
0

-1
8
0

2
M

R
S 5

 E
e
V

2
 E

e
V

[23 of 30]



Dipole in Galactic CoordinatesDipole in Galactic Coordinates
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Summary of ResultsSummary of Results
spectrum, composition, secondaries:

• high-exposure study of UHE flux
→ strong flux suppression

• FD/SD composition studies
→ light composition at ankle
→ mixed composition at UHE
→ Galactic Fe around 1017.2 eV?

• constraints on p-dominated sources via ν/γ

• compatible with rigidity-dependent Emax

hadronic interactions:

• standard UHE cross section

• muon deficit in models

arrival directions:

• indication for intermediate-scale anisotropy

• observation of dipolar anisotropy
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Questions for the next ICRCsQuestions for the next ICRCs

• Origin of the flux suppression?

• Proton fraction at UHE?

• Rigidity-dependence of anisotropies?

• Hadronic physics above
√
s = 140 TeV?

need large-exposure detector with
composition sensitivity!

The Pierre Auger Observatory Upgrade

“AugerPrime”

Preliminary Design Report

The Pierre Auger Collaboration
April, 2015

OBSERVATORY

Observatorio Pierre Auger,
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Detector Upgrades for AugerPrimeDetector Upgrades for AugerPrime

• 3.8 m2 scintillators (SSD) on each 1500-m array station
• upgrade of station electronics
• additional small PMT to increase dynamic range
• buried muon counters in 750-m array (AMIGA)
• increased FD uptime
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Expected Performance of AugerPrimeExpected Performance of AugerPrime
Xmax determination:
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AugerPrime Engineering ArrayAugerPrime Engineering Array
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AugerPrime Engineering ArrayAugerPrime Engineering Array
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• design finalized and tested

• 180 SSDs to be shipped 2017

• finish construction by 2019

• data taking until 2025
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Dipolar anisotropy of cosmic rays above 8 EeVDipolar anisotropy of cosmic rays above 8 EeV Oscar TabordaOscar Taborda
Arrival directions of the highest-energy cosmic raysArrival directions of the highest-energy cosmic rays Ugo GiaccariUgo Giaccari
Improvements to aerosol attenuation measurementsImprovements to aerosol attenuation measurements Max MalacariMax Malacari
The FRAM telescopeThe FRAM telescope Jiri BlazekJiri Blazek
Energy scale for high-energy cosmic rays using MHz radio measurementsEnergy scale for high-energy cosmic rays using MHz radio measurements Raphael KrauseRaphael Krause
Peculiar lightning-related events observed by the surface detectorPeculiar lightning-related events observed by the surface detector Roberta ColalliloRoberta Colallilo
Measurements of the depth of maximum muon production and of its fluctuationsMeasurements of the depth of maximum muon production and of its fluctuations Manuela MallamaciManuela Mallamaci
Shower universality reconstruction and validationShower universality reconstruction and validation Ariel BridgemanAriel Bridgeman
The influence of weather effects on the reconstruction of extensive air showersThe influence of weather effects on the reconstruction of extensive air showers Alan ColemanAlan Coleman
An improved reconstruction method for the AMIGA detectorsAn improved reconstruction method for the AMIGA detectors Juan Manuel FigueiraJuan Manuel Figueira
Recent Results from the Auger Engineering Radio ArrayRecent Results from the Auger Engineering Radio Array Ewa HoltEwa Holt
AugerPrime implementation in the Offline frameworkAugerPrime implementation in the Offline framework David SchmidtDavid Schmidt
Studies of the microwave emission of extensive air showersStudies of the microwave emission of extensive air showers Romain GaiorRomain Gaior
Auger at Telescope arrayAuger at Telescope array Sean QuinnSean Quinn
Xmax: Measurements and composition implicationsXmax: Measurements and composition implications Jose BellidoJose Bellido
Xmax measurements and tests of hadronic models using the surface detectorXmax measurements and tests of hadronic models using the surface detector Patricia SanchezPatricia Sanchez
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