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Detection of UHECRs: Air Showers
cosm

ic particle

−−−−−−−−→

fluorescence telescope particle detector

air shower
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UHECR Observatories
Telescope Array

Pierre Auger Observatory
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Source Candidates
magnetic confinement during acceleration

using LHC magnets at 1020 eV:
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Propagation of UHECRs in Photon Fields

arXiv:1802.03694

z = 0

CMB (WMAP)

p+ γCMB → p+ e++e−

p+ γCMB → p/n+ π0/π+

A+ γCMB → (A− 1) + p/n

Greisen, Zatsepin & Kuzmin (GZK) 1966
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Propagation of UHECRs in Photon Fields
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D.Allard Astropart.Phys. 39 (2012) 33

Y.Hoffman et al, Nat.Astron. 2 (2018) 680

local universe: inhomogeneous and anisotropic!
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Energy Spectrum
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Difference in Northern and Southern hemisphere? → UHECR SpectrumWorking Group (TA+Auger)

UHECR2018 Paris

O.Deligny for the TA and Pierre Auger Coll., ICRC19, arXiv:2001.08811
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UHECR Composition
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GZK Flux Suppression?
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Maximum Rigidity Model, Peters Cycle?

B. Peters, Nuovo Ciemento 22 (1961) 800

Auger Highlights Antonella Castellina
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Figure 6: Left: The simulated energy spectrum (multiplied by E3) at the top of the Earth’s at-
mosphere obtained with the best fit parameters (see text): all-particle (brown curve), A = 1 (red),
2 ≤ A ≤ 4 (grey), 5 ≤ A ≤ 22 (green), 23 ≤ A ≤ 38 (cyan), A ≥ 39 (blue). The combined energy
spectrum as measured by Auger (Fig.3, right) is shown for comparison] with the black dots. Right:
The first two moments of the Xmax distributions as predicted for the model (brown curve) versus
pure compositions. Only the energy range indicated by the solid brown line is included in the fit.
The measured mean XSD

max are shown with purple triangles for comparison.

photons are produced in the interactions of UHECRs in the background radiation fields during their166

propagation from their sources to Earth. Neither are deflected in the Galactic or intergalactic mag-167

netic fields; they point back to their sources, making them ideal messengers in targeted searches.168

While photons cover travel distances of the order of ∼ 4.5 Mpc at 1 EeV, neutrinos allow us to169

probe sources up to cosmological distances. Their fluxes depend on the properties of the sources170

and on the composition of the primary beam. A copious production of ν and γ can be expected,171

e.g., if the suppression of the UHECR flux above a few tens of EeV is due to propagation effects172

and if the proton component is dominant. On the contrary, an explanation of the cutoff as due to173

the exhaustion of the sources would lead to much lower fluxes of neutral particles and would point174

to a mixed composition.175

The selection of photons in Auger is based on the fact that photon-induced showers present a more176

elongated profile in the atmosphere, and thus a larger Xmax, a steeper lateral distribution, causing177

the involvement of a lower number of SD stations in the events, and a reduced production of muons178

with respect to hadronic showers [20].179

Neutrinos are looked for based on the selection of horizontal showers. In hadronic-induced showers180

above ∼ 60◦, the electromagnetic component is indeed almost completely absorbed in the atmo-181

sphere, and only muons are detected in the SD. On the contrary, in the case of neutrino events with182

similar arrival directions, the first interaction would happen lower in the atmosphere, producing a183

considerable amount of electrons and photons at the ground. Two main categories of events are184

considered: Earth-skimming, induced by ντ travelling from below the Earth crust in directions be-185

8

energy spectrum at source∝ (E/Z)−γ

A. Castellina for the Auger Coll. ICRC19 and JCAP 1704 (2017) 038

?

?

?

12/27



Maximum Rigidity Model, Peters Cycle?

B. Peters, Nuovo Ciemento 22 (1961) 800

Auger Highlights Antonella Castellina

(E/eV)
10

log
18.0 18.5 19.0 19.5 20.0 20.5

]
-1

 y
r

-1
 s

r
-2

 k
m

2
J 

[e
V

3
E

3610

3710

3810

(E/eV)
10

log
18.0 18.5 19.0 19.5 20.0

]
-2

 [g
 c

m
〉

m
ax

X〈

600

650

700

750

800

850

900
H
He
N
Si
Fe

EPOS-LHC

(E/eV)
10

log
18.0 18.5 19.0 19.5 20.0

]
-2

) [
g 

cm
m

ax
(X

σ

0

10

20

30

40

50

60

70

H

He

N
Si
Fe

(E/eV)
10

log
18.0 18.5 19.0 19.5 20.0

]
-2

 [g
 c

m
〉

m
ax

X〈

600

650

700

750

800

850

900
H
He
N
Si
Fe

EPOS-LHC

(E/eV)
10

log
18.0 18.5 19.0 19.5 20.0

]
-2

) [
g 

cm
m

ax
(X

σ

0

10

20

30

40

50

60

70

H

He

N
Si
Fe

Figure 6: Left: The simulated energy spectrum (multiplied by E3) at the top of the Earth’s at-
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considerable amount of electrons and photons at the ground. Two main categories of events are184

considered: Earth-skimming, induced by ντ travelling from below the Earth crust in directions be-185

8

energy spectrum at source∝ (E/Z)−γ

A. Castellina for the Auger Coll. ICRC19 and JCAP 1704 (2017) 038

?

?
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MU, G. Farrar & L. Anchordoqui PRD 92 123001

6
MU, G. Farrar, L. Anchordoqui, PRD 92 (2015) 123001 and M.Muzio, MU, G. Farrar arXiv:1906.06233

see also Globus+15, Biel+17, Kachelriess+17, Supanitsky+18

Cosmic-ray propagation in the turbulent intergalactic medium 3

3. Results

In Fig. 1 the trajectories of three cosmic-ray protons are shown for E = 1017 eV and
E = 1018 eV. One can see in Fig. 1 that the propagation is approximately diffusive near
the source, where the intensity of the fields is higher, transitioning towards a rectlinear
propagation as energy increases.

Figure 1. Slices xy (left), xz (middle) e yz (right column) of the simulated volume. The colour
scale corresponds to the intensity of the field in these regions. Trajectories of three CR protons
are represented through the green lines with different shades. The scenario in the upper row
corresponds to E = 1017 eV, whereas the lower row is for E = 1018 eV.

The diffusion coefficient is energy-dependent and combines two regimes, quasi-linear
(D ∝ E1/3), and non-resonant (D ∝ E2). The diffusion coefficient can be written as
D = 〈r2〉/6t, wherein r is the displacement of the CR with respect to its initial position,
and t is the time it takes to move a distance r. CRs can escape the cluster if t is less than
the age of the cluster, assumed here to be of the order of a Hubble time; r ' 1 Mpc,
the typical size of a cluster. This implies that for D . 1027 m2 s−1 the diffusion time is
comparable to one Hubble time. The behaviour of the diffusion coefficients for different
combinations of energy and distance to the centre of the cluster is shown in Fig. 2.

500 1000 1500 2000 2500 3000
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Figure 2. Diffusion coefficient as a function of the cosmic-ray energy and distance to the
centre of the cluster for the case of protons with an E−1 spectrum leaving the Virgo cluster.

Note that in the central regions of the cluster (r . 500 kpc) the CRs tend to be
confined longer compared to those in the cluster outskirts. The energy at which CRs

Virgo Cluster sim., R.A. Batista et al, arXiv:1811.03062 13/27
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analytic example: full spallation of nucleus A, diffusion τesc ∝ Eα, τint ∝ Eβ

High-pass filter for injected nuclei, soft low-E nucleon spectrum
7
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Single Mass + Photonuclear Interactions in Source Environment
Fiducial Scenario
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Peters Cycle (Galactic Composition) + Photonuc. Int. in Source
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Arrival Directions – Blind Search
Telescope Array (equatorial coordinates)

• energy threshold 5.7× 1019 eV

• search radius 25◦

• nobs = 38, nexp = 14.2

• 5.1σ local significance

• 0.21% post-trial chance probability

S. Ogio for the Telescope Array Coll. ICRC19

Pierre Auger Observatory (Galactic coordinates)

• energy threshold 3.8× 1019 eV

• search radius 27◦

• nobs = 188, nexp = 125

• 5.6σ local significance

• 2.5% post-trial chance probability

L. Caccianiga for the Pierre Auger Coll. ICRC19

Full-sky analysis (equatorial coordinates)

A. Di Matteo for the Auger and TA Coll. ICRC19 arXiv:2001.01864
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Arrival Directions – Catalogue-based Analysis
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Caveat: Deflections in Galactic Magnetic Field

D. Harari MPIfR (left: M51, right: NGC891) Planck PI@30 GHz

backtracking through magnetic field model variations at different rigidities R = E/Z
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Energy Dependence of Dipole
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←model: mixed composition
Rmax = 6 EeV, ρ = 10−4Mpc−3

dipole position→

Pierre Auger Coll., ApJ868 (2018) 4

(see also Chen Ding et al C09 session)
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• Astrophysics at Extreme Energies

• Particle Physics at Extreme Energies



Beam Luminosity
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Particle Detector
• Ebeam > 1× 108 TeV
• √spp up to 400 TeV
• 20 kt water-Cherenkov
• 25 Gt air calorimeter

spacing: 1.5 km 23/27



UHE Proton+Proton Cross Section
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24/27



Muon Production in Air Showers
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Rµ ∼ Nµ/(1.5× 107)

muons at ground
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Muon Production in Air Showers

F. Riehn for the Pierre Auger Coll. ICRC19 arXiv:1909.09073

Rµ ∼ Nµ/(1.5× 107)

muons at ground
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Summary: Cosmic Particles at Extreme Energies
previously today

ConclusionsConclusionsConclusionsConclusionsConclusionsConclusionsConclusionsConclusionsConclusionsConclusionsConclusionsConclusionsConclusionsConclusionsConclusionsConclusionsConclusions

UHECR before Auger UHECR in 2019

Las Meninas by Diego Velazquez 1656 Las Meninas by Pablo Picasso 1957

proton!

mixed!

cutoff?
cutoff!

multipletsmultiplets

dipole! hot spot?

A+ γ ankle?
e+e− dip!

GZK orEmax?GZK!
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Stay Tuned!
Under Construction: AugerPrime Under Construction: TAx4

Launch 2029: POEMMA?

T09 session Monday 3:30 p.m.
see PRD101 (2020) 023012 and

EPJ210 (2019) 06001arXiv:1604.03637
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