Studies of the Mass Composition and Hadronic Interactions of Ultrahigh Energy Cosmic Rays with the Pierre Auger Observatory

M. Unger for the Pierre Auger Collaboration

The Pierre Auger Observatory

Hybrid Detection of Air Showers

Energy Spectrum of UHECRs

exposure at UHE: $(5.34 \pm 0.13) \times 10^4$ km² sr yr

I. Valino for the Pierre Auger Coll., Proc. 34th ICRC, arXiv:1509.03732

Energy Spectrum of UHECRs

exposure at UHE: $(5.34 \pm 0.13) \times 10^4$ km² sr yr

(I. Valino for the Pierre Auger Coll., Proc. 34th ICRC, arXiv:1509.03732)

[5 of 43]

Outline

Mass Composition

- ► Shower Maximum (X_{max})
- Correlation of Ground Signal and X_{max}
- Secondaries (γ and ν)
- Hadronic Interactions
 - Proton+Air Cross Section
 - Number of Muons
 - Muon Production Depth

Primary Mass and Longitudinal Shower Profiles

Primary Mass and Longitudinal Shower Profiles

X_{max} **Distributions**

The Pierre Auger Collaboration, PRD 90 (2014) 12, 122005

X_{max} Distribution: Mean

- first interaction $\langle X_1 \rangle$: λ_p
- shower development: $\langle \Delta X \rangle$: $\propto \ln E$
- $\blacktriangleright \langle X_{\rm max} \rangle_{p} \sim \lambda_{p} + D \ln E$

X_{max} Distribution: Mean

- first interaction $\langle X_1 \rangle$: λ_p
- shower development: $\langle \Delta X \rangle$: $\propto \ln E$
- $\blacktriangleright \langle X_{\rm max} \rangle_{p} \sim \lambda_{p} + D \ln E$
- ▶ superposition model: nucleus $(E, A) \equiv A$ nucleons (E/A, 1)
- $\land \langle X_{\max} \rangle_{A} \sim \lambda_{p} + D \ln(E/A)$

X_{max} Distribution: Standard Deviation

$$\bullet \ \sigma(X_{\max})_{\rho} > \sigma(X_{\max})_{A} > \sigma(X_{\max})_{\rho}/\sqrt{A}$$

mixed composition:

Measured $\langle \textbf{X}_{\text{max}} \rangle$

A. Porcelli for the Pierre Auger Coll., Proc. 34th ICRC, arXiv:1509.03732

Measured $\sigma(\mathbf{X}_{max})$

A. Porcelli for the Pierre Auger Coll., Proc. 34th ICRC, arXiv:1509.03732

Average Shower Maximum: Comparison to TA

Telescope Array Coll., APP 64 (2014) 49

Pierre Auger Coll., PRD 90 (2014) 12, 122005

Average Shower Maximum: Comparison to TA

Telescope Array Coll., APP 64 (2014) 49

Pierre Auger Coll., PRD 90 (2014) 12, 122005

Average Shower Maximum: Comparison to TA

 $\langle \Delta \rangle = (2.9 \pm 2.7 \text{ (stat.)} \pm 18 \text{ (syst.)}) \text{ g/cm}^2$

MU for the Pierre Auger and TA Collaborations, Proc. 34th ICRC, arXiv:1511.02103

Fit of X_{max} Distributions

The Pierre Auger Collaboration, PRD 90 (2014) 12, 122006

Fit of X_{max} Distributions

The Pierre Auger Collaboration, PRD 90 (2014) 12, 122006 [15 of 43]

Outline

Mass Composition

- ▶ Shower Maximum (X_{max})
- Correlation of Ground Signal and X_{max}
- Secondaries (γ and ν)
- Hadronic Interactions
 - Proton+Air Cross Section
 - Number of Muons
 - Muon Production Depth

Correlation between X_{max} and SD Signal

 $18.5 < \lg(E/eV) < 19.0, X_{\max}^*/S^*(1000)$: scaled to $10^{19} \, \text{eV}$

A. Yushkov for the Pierre Auger Coll., Proc. 34th ICRC, arXiv:1509.03732

Correlation between X_{max} and SD Signal

heavier nuclei produce shallower showers with larger signal (more muons) general characteristics of air showers / minor model dependence

More negative correlation \Rightarrow more mixed composition

A. Yushkov for the Pierre Auger Coll., Proc. 34th ICRC, arXiv:1509.03732

Correlation between X_{max} and SD Signal

Data:

 $\begin{array}{c} r_{\rm G}(X^*_{\rm max},\,S^*(1000)) \mbox{ for protons} \\ \mbox{Epos-LHC } QGSJetII-04 & Sibyll 2.1 \\ 0.00 & +0.08 & +0.07 \\ & \mbox{difference to data} \\ \approx 5\sigma & \approx 8\sigma & \approx 7.5\sigma \\ \mbox{difference is larger for other pure beams} \end{array}$

A. Yushkov for the Pierre Auger Coll., Proc. 34th ICRC, arXiv:1509.03732

A. Yushkov for the Pierre Auger Coll., Proc. 34th ICRC, arXiv:1509.03732

A. Yushkov for the Pierre Auger Coll., Proc. 34th ICRC, arXiv:1509.03732

A. Yushkov for the Pierre Auger Coll., Proc. 34th ICRC, arXiv:1509.03732

A. Yushkov for the Pierre Auger Coll., Proc. 34th ICRC, arXiv:1509.03732

Outline

Mass Composition

- ► Shower Maximum (X_{max})
- Correlation of Ground Signal and X_{max}
- Secondaries (γ and ν)
- Hadronic Interactions
 - Proton+Air Cross Section
 - Number of Muons
 - Muon Production Depth

Neutrino- and Photon-Limits

"guaranteed" flux of cosmogenic photons and neutrinos if CRs are protons

C. Bleve for the Pierre Auger Coll., Proc. 34th ICRC, arXiv:1509.03732

Self-Consistent CR+ ν Analysis (TA Spectrum)

spectral index at source γ and source evolution $(1 + z)^m$

J. Heinze, D. Boncioli, M. Bustamante, W. Winter, arXiv:1512.05988

Outline

Mass Composition

- ► Shower Maximum (X_{max})
- Correlation of Ground Signal and X_{max}
- Secondaries (γ and ν)
- Hadronic Interactions
 - Proton+Air Cross Section
 - Number of Muons
 - Muon Production Depth

Measurement of the UHE Proton+Air Cross Section

tail of X_{max} distribution:

Measurement of the UHE Proton+Air Cross Section

R. Ulrich for the Pierre Auger Coll., Proc. 34th ICRC, arXiv:1509.03732

Derived UHE Proton+Proton Cross Section

R. Ulrich for the Pierre Auger Coll., Proc. 34th ICRC, arXiv:1509.03732

Outline

Mass Composition

- ► Shower Maximum (X_{max})
- Correlation of Ground Signal and X_{max}
- Secondaries (γ and ν)
- Hadronic Interactions
 - Proton+Air Cross Section
 - Number of Muons
 - Muon Production Depth

Muons in Air Showers

R. Ulrich, APS 2010

- muons are produced late in the shower cascade
 - $\rightarrow\,$ number of generations \sim 6 at 10^{19} eV
 - \rightarrow amplified sensitivity to hadronic interactions
- X_{max} is dominated by first interaction

Measurement of Muons with the Auger SD

a) shielding of EM component:

b) time structure:

Muon Studies with Inclined Hybrid Events (62°-80°)

event 201114505353, $\theta = 75.6^{\circ}$, E = 15.5 EeV

Pierre Auger Coll., PRD D91 (2015) 3, 032003

QGSJETII-03, $p, E = 10^{19} \text{ eV} \rightarrow R_{\mu} = 1$

$\langle \textbf{R}_{\mu} \; \rangle / \textbf{E}_{\textbf{FD}}$ vs. $\textbf{E}_{\textbf{FD}}$

$\langle \textbf{R}_{\mu} \; \rangle / \textbf{E}_{\textbf{FD}}$ vs. $\textbf{E}_{\textbf{FD}}$

- (- -, -, - - - - - -

Muon Scale vs. X_{max} (FD)

Hybrid Events, Data vs. Simulation

G. Farrar for the Pierre Auger Coll., Proc. 33th ICRC, arXiv:1307.5059

[37 of 43]

Hybrid Events, Data vs. Simulation

Combined fit of energy scale R_E and had. component rescaling R_{had}

G. Farrar for the Pierre Auger Coll., Proc. 33th ICRC, arXiv:1307.5059

Outline

Mass Composition

- ► Shower Maximum (X_{max})
- Correlation of Ground Signal and X_{max}
- Secondaries (γ and ν)
- Hadronic Interactions
 - Proton+Air Cross Section
 - Number of Muons
 - Muon Production Depth

Muon Production Depth

L. Cazon et al., APP21 (2004), 71

 X_{max}^{μ} vs. Energy

 $\frac{d\langle X_{\text{max}}^{\mu}\rangle}{d \log E} = -25 \pm 22 \text{ (stat.)} \pm 21 \text{ (syst.)} \text{ g/cm}^2/\text{decade}$ proton: 35.9 ± 1.2, iron: 48.0 ± 1.2 g/cm²/decade

Comparison of $\langle InA \rangle$ from X^{\mu}_{max} and X_{max}(FD)

Pierre Auger Coll., PRD D90 (2014) 1, 012012

Summary

- elongation rate, $\langle X_{\text{max}} \rangle$, $\sigma(X_{\text{max}})$, $r_G(X_{\text{max}}^*/S^*(1000))$
 - \rightarrow mixed composition around and above the ankle
 - (if LHC-inspired extrapolations are ok)
 - \rightarrow nature of flux suppression? See Jim's talk!
- neutrinos and photons
 - ightarrow start probing cosmogenic fluxes from 100% p
- p+air cross section
 - \rightarrow compatible with model extrapolations
- muon number
 - \rightarrow at odds with predictions for mixed composition
- muon production depth vs. X_{max}
 - \rightarrow QGSjetII-04: marginally compatible, EPOS-LHC: incompatible

Please check arXiv:1509.03732 for the complete list of recent Auger results!