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Hybrid Detection of Air Showers
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Energy Spectrum of UHECRs
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Energy Spectrum of UHECRs
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p + γEBL → p + e+ + e−?

p+γCMB → p/n+π0/π+?
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Outline

I Mass Composition
I Shower Maximum (Xmax)
I Correlation of Ground Signal and Xmax
I Secondaries (γ and ν)

I Hadronic Interactions
I Proton+Air Cross Section
I Number of Muons
I Muon Production Depth
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Primary Mass and Longitudinal Shower Profiles
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Primary Mass and Longitudinal Shower Profiles
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Xmax Distributions
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Xmax Distribution: Mean
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Figure 2.27: Principle of the Xmax-distribution decomposition method. The Xmax-distribution results
from the convolution of the distributions of X1 and ∆X1, where ∆X1 = Xmax − X1.

kX = Λobs/λp−air. The found dependence of kX on a changing multiplicity as well as cross sec-

tion has never been taken into account by any air shower based cross section measurement.

Xmax-RMS method. For a short time it was believed that the proton-air cross section can be

obtained just from the measurement of Xmax-fluctuations [115, 116]. In fact, the fluctuations

are depending on the cross section, but nowadays it is well known that the RMS of the Xmax-

distribution does mostly reflect the primary composition of cosmic rays. As a matter of fact,

it is the best handle we currently have to learn about the primary mass composition. Only

the extremely doubtful assumption of a pure proton cosmic ray composition may allow a

measurement of the cross section this way.

Unfolding of the Xmax-distribution. A real improvement of the cross section measure-

ment techniques was proposed by taking the air shower fluctuations more explicity into

account [109]. This allows us to use not only the slope but more of the shape of the Xmax-

distribution, by at the same time restricting the analysis to a range in Xmax, where the pos-

sible contribution from primaries other than protons is minimal. The ansatz unfolds the

measured Xmax-distribution (2.14), by using a given ∆X1-distribution to retrieve the original

X1-distribution (see Figure 2.27). The HiRes Collaboration claimed model independence of

the used ∆X1-distribution, leading to a model independent result for the cross section.

Indeed, this would have been a major step forward, since all the previous techniques

are heavily depending on air shower Monte Carlo simulations and are therefore implicitly

model dependent. Of course also the ∆X1-distribution can not be accessed by observations,

but has to be inferred entirely from simulations. Recently this triggered a discussion about

the general shape and model dependence of the ∆X1-distribution [117]. Ultimately this in-

troduces a comparable amount of model dependence, as in the k-factor techniques (see Fig-

ure 2.28, left). This is a natural consequence of the fact that all air shower based analysis

techniques are based on expression (2.14) in one or the other way.

Figure 2.28 (left) visualizes the dependence of the ∆X1-distribution on hadronic inter-

action models. The ∆X1-distribution, which mostly reflects the shower startup phase, is

strongly depending on the parameters of the hadronic interaction models, like the cross

33

I first interaction 〈X1〉: λp

I shower development: 〈∆X 〉: ∝ ln E
I 〈Xmax〉p ∼ λp + D ln E

I superposition model: nucleus (E , A) ≡ A nucleons (E/A,1)

I 〈Xmax〉A ∼ λp + D ln(E/A)

E : primary energy, λp : proton interaction length, D: elongation rate, A: mass number
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Figure 2.27: Principle of the Xmax-distribution decomposition method. The Xmax-distribution results
from the convolution of the distributions of X1 and ∆X1, where ∆X1 = Xmax − X1.

kX = Λobs/λp−air. The found dependence of kX on a changing multiplicity as well as cross sec-

tion has never been taken into account by any air shower based cross section measurement.

Xmax-RMS method. For a short time it was believed that the proton-air cross section can be

obtained just from the measurement of Xmax-fluctuations [115, 116]. In fact, the fluctuations

are depending on the cross section, but nowadays it is well known that the RMS of the Xmax-

distribution does mostly reflect the primary composition of cosmic rays. As a matter of fact,

it is the best handle we currently have to learn about the primary mass composition. Only

the extremely doubtful assumption of a pure proton cosmic ray composition may allow a

measurement of the cross section this way.

Unfolding of the Xmax-distribution. A real improvement of the cross section measure-

ment techniques was proposed by taking the air shower fluctuations more explicity into

account [109]. This allows us to use not only the slope but more of the shape of the Xmax-

distribution, by at the same time restricting the analysis to a range in Xmax, where the pos-

sible contribution from primaries other than protons is minimal. The ansatz unfolds the

measured Xmax-distribution (2.14), by using a given ∆X1-distribution to retrieve the original

X1-distribution (see Figure 2.27). The HiRes Collaboration claimed model independence of

the used ∆X1-distribution, leading to a model independent result for the cross section.

Indeed, this would have been a major step forward, since all the previous techniques

are heavily depending on air shower Monte Carlo simulations and are therefore implicitly

model dependent. Of course also the ∆X1-distribution can not be accessed by observations,

but has to be inferred entirely from simulations. Recently this triggered a discussion about

the general shape and model dependence of the ∆X1-distribution [117]. Ultimately this in-

troduces a comparable amount of model dependence, as in the k-factor techniques (see Fig-

ure 2.28, left). This is a natural consequence of the fact that all air shower based analysis

techniques are based on expression (2.14) in one or the other way.

Figure 2.28 (left) visualizes the dependence of the ∆X1-distribution on hadronic inter-

action models. The ∆X1-distribution, which mostly reflects the shower startup phase, is

strongly depending on the parameters of the hadronic interaction models, like the cross
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Xmax Distribution: Standard Deviation
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Measured 〈Xmax〉
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Measured σ(Xmax)
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Average Shower Maximum: Comparison to TA
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Average Shower Maximum: Comparison to TA
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Average Shower Maximum: Comparison to TA
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Fit of Xmax Distributions
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FIG. 5: Xmax distribution of the fits for energy bin E = 1017.8�17.9 eV. Results using Sibyll 2.1

are shown in the top row, QGSJET II-4 in the middle row, and EPOS-LHC in the bottom row.

The left column displays results where protons and iron nuclei were used, the central column also

includes nitrogen nuclei, and the right column includes helium nuclei in addition.

data lie between those for protons and iron nuclei but the distributions are too narrow to

accommodate a mixture of the two. Thus we conclude that either the model predictions are

wrong or else other nuclei with shorter propagation length form a significant component of

the UHECR flux that reaches the upper atmosphere.

Adding intermediate components greatly improves the fits for all hadronic interaction

models. EPOS-LHC in particular are satisfactory over most of the energy range. It is

interesting to note that including intermediate components also brings the models into re-
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FIG. 6: Xmax distribution of the fits for energy bin E = 1019.0�19.1 eV. See caption to Fig. 5.

markable agreement in their predictions of the protons and iron nuclei contributions despite

large di↵erences in the remaining composition. This can be seen in the right column of

Fig. 5. All three models give acceptable fit qualities with consistent fractions of protons,

but with distinctly di↵erent predictions for the remaining composition; results of EPOS-LHC

simulations favor a mixture dominated by nitrogen nuclei, while QGSJET II-4 simulation

favor helium nuclei, whereas Sibyll 2.1 modeling leads to a mixture of the two.

A substantial change in the proton fractions is observed across the entire energy range,

which rises to over 60% around the ankle region (⇠ 1018.2 eV) and subsequently dropping

to near-zero just above 1019 eV with a possible resurgence at higher energies. If the ankle

feature is interpreted as a transition from Galactic to extragalactic cosmic rays [14], the
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FIG. 7: Xmax distribution of the fits for energy bin E > 1019.5 eV. See caption to Fig. 5.

proton fraction in this energy range is surprisingly large as the upper limits on the large-scale

anisotropy [15] suggests that protons with energies below 1018.5 eV are most likely produced

by extragalactic sources. In order to accommodate a proton-dominated scenario for energies

above 1018 eV [16], the hadronic interaction models would need to be modified considerably.

The transition to heavier cosmic rays with increasing energy is reminiscent of a Peters

cycle [17], where the maximum acceleration energy of a species is proportional to its charge

Z. However further analysis that takes into account the energy spectrum and propagation

of UHECRs through the universe would be required to confirm this. Composition-sensitive

data above 1019.5 eV will be needed to allow a reliable interpretation of the observed changes

of composition in terms of astrophysical models (see e.g. Refs. [18, 19]).

19
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Fit of Xmax Distributions
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Correlation between Xmax and SD Signal

18.5 < lg(E/eV ) < 19.0, X∗
max/S∗(1000): scaled to 1019 eV

The key idea

correlation between X∗
max and S∗(1000) depends on the purity of the primary beam
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Correlation between Xmax and SD Signal
The key idea

heavier nuclei produce shallower showers with larger signal (more muons)
general characteristics of air showers / minor model dependence
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Correlation between Xmax and SD Signal

Data:Data vs pure beams
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Relation to Mass DispersionrG(X
∗
max, S

∗(1000)) vs dispersion of masses σ(lnA)

)A(ln σ
0 0.5 1 1.5 2

(1
00

0)
)

*
S, 

m
ax*

X
 (

Gr

0.5−

0.4−

0.3−

0.2−

0.1−

0.0

0.1

0.2

0.3

0 ≥ Grpure beams, 

Fe  0.5− p 0.5

, He, O, FepMixtures of 
0.1) = if ∆(step in fractions 

Epos-LHC

preliminary

11/17
A. Yushkov for the Pierre Auger Coll., Proc. 34th ICRC, arXiv:1509.03732

[19 of 43]



Relation to Mass DispersionDispersion of masses: data vs simulations
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Relation to Mass DispersionDispersion of masses: data vs simulations
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Relation to Mass DispersionDispersion of masses: data vs simulations
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Neutrino- and Photon-Limits

“guaranteed” flux of cosmogenic photons and neutrinos if CRs are protons
Auger neutrino and photon limits Carla Bleve
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Figure 6: Upper limits to the diffuse flux of
UHE neutrinos at 90% C.L. in integrated (hor-
izontal lines) and differential form. Limits de-
scribed in this work (red lines) are compared
with cosmogenic neutrino models [16, 17, 18],
the Waxman-Bahcall bound [19], and limits
from IceCube [20] and ANITA [21]. All neu-
trino limits and fluxes are converted to single-
flavour.
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Figure 7: Upper limits at 95% C.L. to the diffuse
flux of UHE photons derived in this work (black)
shown together with previous results from the
Pierre Auger Observatory with hybrid (Hyb) and
SD data [22], Telescope Array (TA) [23], Yakutsk
(Y) [24], Haverah Park (HP) [25], AGASA (A)
[26] and predictions from several top-down [27,
28] and cosmogenic photon models [27, 17].

evolution and model for the transition from galactic to extragalactic cosmic-rays [18]. A 10-fold
increase in the exposure will be needed to reach the most optimistic predictions in case of a pure
iron composition at sources, out of the range of the current configuration of the observatory.

3.2 Limits to the integrated photon flux

The upper limits on the integral flux of photons, for Eγ > E0, are defined as:

FCL
γ (Eγ > E0) =

NCL
γ

〈E 〉 (3.3)

where Eγ is assigned according to the photon energy reconstruction; NCL
γ is the Feldman-Cousins

upper limit to the number of photon events computed at a confidence level CL in the hypothesis of
no background event expected; 〈E 〉 is the spectrum-weighted average exposure in the energy range
Eγ > E0. In the period of data taking considered, the value of 〈E 〉 is 5200, 6800, 6300 km2 sr yr,
for Eγ >10, 20, 40 EeV respectively. The limits to the integral flux are:

F95%
γ (Eγ > 10, 20, 40 EeV)< 1.9, 1.0, 0.49×10−3 km−2 yr−1 sr−1. (3.4)

The limits to the diffuse flux of photons obtained with the Auger Observatory are the most stringent
currently available above 1 EeV (Fig. 7). Top-down models of photon production from the decay
of heavy primordial particles [27, 28] are strongly disfavoured. Preliminary limits derived in this
work for Eγ > 10 EeV start constraining the most optimistic predictions of cosmogenic photon
fluxes in the assumption of a pure proton composition at the sources [27]. Cosmogenic models
using a primary spectral index of -2 and maximum energy of 1021 eV at the sources [17] predict an
integrated photon flux above 10 EeV ∼4 times lower than the current limits in the case of proton
primaries, ∼2 orders of magnitude lower if iron nuclei are injected at the sources.

7

C. Bleve for the Pierre Auger Coll., Proc. 34th ICRC, arXiv:1509.03732
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Self-Consistent CR+ν Analysis (TA Spectrum)

spectral index at source γ and source evolution (1 + z)m

... similar results for three-parameter fit (m, γ,Emax)

J. Heinze, D. Boncioli, M. Bustamante, W. Winter, arXiv:1512.05988

[23 of 43]



Outline

I Mass Composition
I Shower Maximum (Xmax)
I Correlation of Ground Signal and Xmax
I Secondaries (γ and ν)

I Hadronic Interactions
I Proton+Air Cross Section
I Number of Muons
I Muon Production Depth

[24 of 43]



Measurement of the UHE Proton+Air Cross
Section

tail of Xmax distribution:
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Figure 2.27: Principle of the Xmax-distribution decomposition method. The Xmax-distribution results
from the convolution of the distributions of X1 and ∆X1, where ∆X1 = Xmax − X1.

kX = Λobs/λp−air. The found dependence of kX on a changing multiplicity as well as cross sec-

tion has never been taken into account by any air shower based cross section measurement.

Xmax-RMS method. For a short time it was believed that the proton-air cross section can be

obtained just from the measurement of Xmax-fluctuations [115, 116]. In fact, the fluctuations

are depending on the cross section, but nowadays it is well known that the RMS of the Xmax-

distribution does mostly reflect the primary composition of cosmic rays. As a matter of fact,

it is the best handle we currently have to learn about the primary mass composition. Only

the extremely doubtful assumption of a pure proton cosmic ray composition may allow a

measurement of the cross section this way.

Unfolding of the Xmax-distribution. A real improvement of the cross section measure-

ment techniques was proposed by taking the air shower fluctuations more explicity into

account [109]. This allows us to use not only the slope but more of the shape of the Xmax-

distribution, by at the same time restricting the analysis to a range in Xmax, where the pos-

sible contribution from primaries other than protons is minimal. The ansatz unfolds the

measured Xmax-distribution (2.14), by using a given ∆X1-distribution to retrieve the original

X1-distribution (see Figure 2.27). The HiRes Collaboration claimed model independence of

the used ∆X1-distribution, leading to a model independent result for the cross section.

Indeed, this would have been a major step forward, since all the previous techniques

are heavily depending on air shower Monte Carlo simulations and are therefore implicitly

model dependent. Of course also the ∆X1-distribution can not be accessed by observations,

but has to be inferred entirely from simulations. Recently this triggered a discussion about

the general shape and model dependence of the ∆X1-distribution [117]. Ultimately this in-

troduces a comparable amount of model dependence, as in the k-factor techniques (see Fig-

ure 2.28, left). This is a natural consequence of the fact that all air shower based analysis

techniques are based on expression (2.14) in one or the other way.

Figure 2.28 (left) visualizes the dependence of the ∆X1-distribution on hadronic inter-

action models. The ∆X1-distribution, which mostly reflects the shower startup phase, is

strongly depending on the parameters of the hadronic interaction models, like the cross

33

Measurement of Λη
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Measurement of the UHE Proton+Air Cross
Section

Proton-air cross section
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Ralf Ulrich for the Pierre Auger Collaboration 12
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Derived UHE Proton+Proton Cross Section

Inelastic proton-proton cross section

Extended Glauber conversion with inelastic screening + propagation of modeling uncertainties
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Muons in Air Showers
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I muons are produced late in the shower cascade
→ number of generations ∼ 6 at 1019 eV
→ amplified sensitivity to hadronic interactions

I Xmax is dominated by first interaction
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Measurement of Muons with the Auger SD

a) shielding of EM component:
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Muon Studies with Inclined Hybrid Events (62◦-80◦)

event 201114505353, θ = 75.6◦, E = 15.5 EeV
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Rµ vs. EFD
Pierre Auger Coll., PRD D91 (2015) 3, 032003
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〈Rµ 〉/EFD vs. EFD Pierre Auger Coll., PRD D91 (2015) 3, 032003
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〈Rµ 〉/EFD vs. EFD Pierre Auger Coll., PRD D91 (2015) 3, 032003
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Muon “Elongation Rate” vs. p/Fe
〈ln Rµ〉 at 1019 eV d ln Rµ/d ln E
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Muon “Elongation Rate” vs. p/Fe and lnA (FD)
〈ln Rµ〉 at 1019 eV d ln Rµ/d ln E
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Muon Scale vs. Xmax (FD)
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Hybrid Events, Data vs. Simulation
example:

ratio of S(1000) data/MC:
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Hybrid Events, Data vs. Simulation
Combined fit of energy scale RE and had. component rescaling Rhad
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I Proton+Air Cross Section
I Number of Muons
I Muon Production Depth
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Muon Production Depth
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I muon-rich stations:
I events with zenith angle 55-65 deg.
I stations with core distance >1.7 km

I projection of signal time traces to axis
I sum up stations

→ distribution of muon production heights

I distance to slant depth conversion
I fit with Gaisser-Hillas
→ maximum at Xµ

max

L. Cazon et al., APP21 (2004), 71

[40 of 43]



Xµ
max vs. Energy
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Pierre Auger Coll., PRD D90 (2014) 1, 012012
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Comparison of 〈lnA〉 from Xµ
max and Xmax(FD)
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Summary

I elongation rate, 〈Xmax〉, σ(Xmax), rG(X ∗
max/S∗(1000))

→ mixed composition around and above the ankle
(if LHC-inspired extrapolations are ok)

→ nature of flux suppression? See Jim’s talk!
I neutrinos and photons
→ start probing cosmogenic fluxes from 100% p

I p+air cross section
→ compatible with model extrapolations

I muon number
→ at odds with predictions for mixed composition

I muon production depth vs. Xmax
→ QGSjetII-04: marginally compatible, EPOS-LHC: incompatible

Please check arXiv:1509.03732 for the complete list of recent Auger results!

[43 of 43]


