Origin of the Ankle and the Light Composition at EeV Energies

L. Anchordoqui, G. Farrar, M. Unger

MU, G.F. Farrar & L.A. Anchordoqui Phys.Rev. D92 (2015) 123001, arXiv:1505.02153

Previous Mixed Composition Models

Previous Mixed Composition Models

Light Composition around $10^{18} \text{ eV} \dots$

Pierre Auger Coll., PRD 90 (2014) 12, 122006

... but no Anisotropy

Auger dipole amplitude limits:

TA latitude distribtion:

 $\rightarrow \text{extragalactic origin!}$

Mixed Composition Model plus "Component X"

R. Aloisio, V. Berezinsky&P. Blasi JCAP 1410 (2014) 020

Photonuclear Interactions in Source Environment?

Photonuclear Interactions in Source Environment?

analytic example: full spallation of nucleus A, diffusion $\tau_{\rm esc} \propto E^{\alpha}$, $\tau_{\rm int} \propto E^{\beta}$

High-pass filter for injected nuclei, soft low-E nucleon spectrum

Photonuclear Interactions in a "peaky" Photon Field

 28 Si in a broken power-law photon field, $\alpha = \frac{3}{2}$, $\beta = -1$ and $\varepsilon_0 = 0.11 \text{ eV}$

Photonuclear Interactions in a "peaky" Photon Field

Near-universal "L-curve" depending mostly on peak position

Details of Calculation

- PSB chain with TALYS cross sections and branching ratios
- Lorentz-factor conservation $E \approx E_i/A$
- recursive "trickle-down" calculation of production rates Q

$$\mathcal{Q}(E, A) = \sum_{A' > A} \sum_{i=1}^{A'-A} b(E_i, A, A+i) \eta(E_i, A+i) \mathcal{Q}(E_i, A+i) \left| \frac{dE_i}{dE} \right|$$

injected nuclei A', secondary A, branching ratio b, interaction fraction η

- fixed pion inelasticity for photo-pion: $\kappa_{PP} = 0.8$
- full decay kinematics of neutron and pion decay
- neutrino oscillation over astronomical distances
- end of Galactic spectrum: power law mass A_{gal}
- fast intergalactic propagation using propagation matrices (CRPropa)

 \rightarrow full calculation of CR spectrum and composition at Earth in $\mathcal{O}(100 \text{ ms})$

- injected mass: Fe
- $\blacktriangleright \ \gamma = -1$
- $E_{\rm max}({\rm Fe}) = 10^{19.8} \, {\rm eV}$
- photon field: black body, T=250 K

•
$$\lambda_{
m esc} = \mathbf{1} imes \lambda_{
m int}$$
 at 10^{19} eV

- injected mass: Fe
- $\blacktriangleright \ \gamma = -1$
- $E_{\rm max}({\rm Fe}) = 10^{19.8} \, {\rm eV}$
- photon field: black body, T=250 K
- $\lambda_{
 m esc} = 10 imes \lambda_{
 m int}$ at $10^{19} \, {
 m eV}$

- injected mass: Fe
- $\blacktriangleright \ \gamma = -1$
- $E_{\rm max}({\rm Fe}) = 10^{19.8} \, {\rm eV}$
- photon field: black body, T=250 K
- $\lambda_{\rm esc} = 100 \times \lambda_{\rm int}$ at 10^{19} eV

- injected mass: Fe
- $\blacktriangleright \ \gamma = -1$
- $E_{\rm max}({\rm Fe}) = 10^{19.8} \, {\rm eV}$
- photon field: black body, T=150 K
- $\lambda_{\rm esc} = 100 \times \lambda_{\rm int}$ at 10^{19} eV

- injected mass: Fe
- $\blacktriangleright \ \gamma = -1$
- $E_{\max}(\text{Fe}) = 10^{19.8} \text{ eV}$
- photon field: black body, T=50 K
- $\lambda_{
 m esc} = 100 imes \lambda_{
 m int}$ at $10^{19} \ {
 m eV}$

Fiducial Scenario

source parameters			
power law index of injected nuclei	γ	fix	-1
mass number of injected nuclei	A	free	28 (29)
maximum energy	$E_{\rm max}^p$	free	$10^{18.5} (18.6) \text{ eV}$
cosmic ray power density, $E > 10^{17.5} \mathrm{eV}$	$\dot{\epsilon}_{17.5}$	free	$9.2 (13) \times 10^{44} \text{ erg Mpc}^{-3} \text{ yr}^{-1}$
evolution	$\xi(z(t))$	fix	star formation rate $[60]$
source environment			
energy of maximum of photon field density	ε_0	free	0.11 (0.07) eV
power law index of photon spectrum ($\varepsilon < \varepsilon_0$)	α	fix	$+\frac{3}{2}$
power law index of photon spectrum ($\varepsilon \ge \varepsilon_0$)	β	fix	$-\tilde{2}$
power law index of escape length	δ	free	-0.77(-0.94)
ratio of interaction and escape time	R_{19}^{Fe}	free	$4.4 (3.7) \times 10^2$
propagation to Earth			
infra-red photon background	-	fix	Gilmore12 [61]
spectrum of Galactic cosmic rays			
power law index at Earth	$\gamma_{ m gal}$	free	-4.2(-3.7)
mass number of Galactic nuclei	$A_{\rm gal}$	fix	56
flux fraction at $10^{17.5} \mathrm{eV}$	$f_{\rm gal}$	free	57 (72) %

What about Mixed Injected Composition?

Fit using TA Spectrum, 100% Iron at Injection

Fit injecting Galactic Mix*

^{*} direct measurements of Galactic flux at TeV

Effect of Source Evolution

- source evolution $\propto (1+z)^m$
- ▶ test -4 < m < 4 and star formation rate</p>
- m = 0: no evolution
- ▶ m < 0: local sources dominate (à la Taylor et al 2015)</p>

Photon Peak Energy and Neutrino Predictions

Summary

Previous mixed-comp. scenarios

- $E_{\rm max} \propto Z$
- hard injection spectrum $\gamma pprox 1$
- ad-hoc composition fractions
- ad-hoc low-E light component

Photonuclear interactions at source

$$E_{\rm max} \propto Z$$

works with Galactic composition

explain ankle and low-E protons

hard injection spectrum $\gamma \approx 1$

source properties: additonal doF

see also:

·--

·--

- photonuclear interactions in GRBs
 N. Globus et al 2015, D. Biel et al 2017
- p+p interactions at source
 M. Kachelriess et al. 2017
- galactic-extragalactic transition
 S. Thoudam et al 2016