Global Modeling of the Galactic Magnetic Field and Thermal Electrons

M. Unger^{1,2} & G.R. Farrar¹

¹New York University, ²Karlsruhe Institute of Technology

JF12 visualization by Farrar & Sandstrom

Global Modeling of the Galactic Magnetic Field: Arrival Directions of Ultrahigh Energy Cosmic Rays*

* one of many useful application of global GMF models!

Cosmic-Ray Sky above 10¹⁹ eV: 30 .en

Pierre Auger and TA Collaborations, ApJ 794 (2014) 2, 172

Global Modeling of the Galactic Magnetic Field: Arrival Directions of Ultrahigh Energy Cosmic Rays

red: simulated sources, black: arrival direction at Earth

Pierre Auger Coll., APP 35 (2012) 3543 of 17

Jansson&Farrar Global Magnetic Field Model (JF12)

three (divergenceless!) components:

- disk field, ($h \lesssim 0.4$ kpc)
- toroidal halo field ($h_{scale} \sim 5.3 \text{ kpc}$)
- "X-field" (halo)
- regular field^a: 21 parameters
- random field^b: 13 parameters
- striation: 1 parameter
- CR electron norm.: 1 parameter

JF12 Model (Regular Field) Data: • extragalactic RMs

WMAP Stokes Q and U

Model: ► RM ∝ ∫_∞⁰ B_{||}(*I*) n_e(*I*) d*I*

• $Q/U \propto \int_{\infty}^{0} B_{\perp}(I)^{\frac{p+1}{2}} n_{\rm cre}(I) \,\mathrm{d}I$

thermal electron density $n_e(l)$, CR electron density $n_{cre}(l)$ and spectrum E^p

Model Uncertainties

Example: Statistical (!) uncertainties cosmicray deflections in regular field:

G.R. Farrar, CRP 15 (2014) 339

What about underlying model assumptions??

Thermal Electrons: NE2001 Model

J. Cordes&T. Lazio, arXiv:0207156 and 0301598

"Superposed with the large-scale and local-ISM components are clumps of excess electron density that we infer from the database of measurements as outliers from the smooth model."

(C&L 2002, each pulsar line of sight is discussed in C&L (2003)).

NE2001 "clumps" vs. $H\alpha$ Data

- emission measure $EM \propto \int_0^\infty n_e^2(I) dI$ from $H\alpha$ map
- NE2001 "clumps" + Gum

VTSS, SHASSA, WHAM (D. Finkbeiner ApJS 146 (2003) 407)

NE2001 "clumps" vs. $H\alpha$ Data

- emission measure $EM \propto \int_0^\infty n_e^2(I) dI$ from $H\alpha$ map
- classical HII regions (τ (SFD) < 2)

VTSS, SHASSA, WHAM (D. Finkbeiner ApJS 146 (2003) 407)

EM (top) and RM (bottom)

data

NE2001+HII+JF12

HII B-field Estimates vs. Regular (!) JF12

	JF12 <i>B</i> ∥ [µG]	estimated B_{\parallel} [μ G]
S27	-0.2	-6.1±2.8 ^b
Sh119	-1.1	-19.9±5.3 ^a
Sh220	+0.0	-6.3±2.4 ^b
Sh264	+0.6	+1.3±1.3 ^{<i>a</i>} , +2.2±1.5 ^{<i>b</i>} ,
Siv3	-0.4	-2.5±1.5 ^b

^aC. Heiles, Y.H. Chu, T.H. Troland, ApJ **247** (1981) 77

^bL. Harvey-Smith, G.J. Madsen, B.M. Gaensler, ApJ 736 (2011) 83

► 123 line of sights with dispersion measure $DM = \int_0^D n_e(I) dI$ and $\sigma(D)/D < 1/3$ (LMC/SMC excluded).

ATNF pulsar database v1.54 G. Desvignes et al, MNRAS 458 (2016) 3341

www.astro.cornell.edu/~shami/psrvlb/parallax.html
psrpop.phys.wvu.edu/LKbias/about.php
www.physics.mcmaster.ca/~harris/mwgc.dat

original NE2001 model:

re-tuned^a thick-disk scale height (used for JF12): 0.97→1.83 kpc

^aB. Gaensler et al, PASA 25 (2008) 184, also D. Schnitzeler, MNRAS 427 (2012) 664.

Removing ad-hoc NE2001 clumps, adding 47 nearby HII regions

Refit with double-exponential thick disk (for illustration)

remaining "outliers" mainly in GP, including more HII may tighten scatter

Summary

Ongoing studies: Effect of thermal electron uncertainties on global GMF fit

- better modeling of local distribution of n_e helpful to understand fluctuations and "locality" of extragalactic RMs
- in preparation: WHAM(v)+3D Dust.
- re-tune NE2001

Further improvements / studies for a successor to JF12 (and more realistic GMF uncertainties):

- cosmic ray electrons
- functional forms used in JF12
- functional forms used in NE2001
- correlation of n_e and B

backup

Spiraling X-field ↔ distinctive L-R, up-down pattern in Q, U

The halo field is DIRECTED, not just striated

Independent evidence for JF12 X-field, from orientation of Supernova Remnants

