Ultrahigh Energy Cosmic Rays What Do We Know and What's Next?

M. Unger (NYU&KIT)

photo by S.J. Saffi, University of Adelaide

UHECR Observatories

UHECR Observatories

Telescope Array

Pierre Auger Observatory

Hybrid Detection of Air Showers

Energy Spectrum of UHECRs

exposure at UHE: $(5.34 \pm 0.13) \times 10^4$ km² sr yr

I. Valino for the Pierre Auger Coll., Proc. 34th ICRC, arXiv:1509.03732

Energy Spectrum of UHECRs

exposure at UHE: $(5.34 \pm 0.13) \times 10^4$ km² sr yr

(I. Valino for the Pierre Auger Coll., Proc. 34th ICRC, arXiv:1509.03732)

Energy Spectrum of UHECRs

exposure at UHE: $(5.34 \pm 0.13) \times 10^4$ km² sr yr

(I. Valino for the Pierre Auger Coll., Proc. 34th ICRC, arXiv:1509.03732)

Primary Mass and Longitudinal Shower Profiles

Primary Mass and Longitudinal Shower Profiles

Measured $\langle \mathbf{X_{max}} \rangle$

A. Porcelli for the Pierre Auger Coll., Proc. 34th ICRC, arXiv:1509.03732

Measured $\sigma(\mathbf{X}_{\max})$

A. Porcelli for the Pierre Auger Coll., Proc. 34th ICRC, arXiv:1509.03732

Average Shower Maximum: Comparison to TA

Telescope Array Coll., APP 64 (2014) 49

Pierre Auger Coll., PRD 90 (2014) 12, 122005

Average Shower Maximum: Comparison to TA

Telescope Array Coll., APP 64 (2014) 49

Pierre Auger Coll., PRD 90 (2014) 12, 122005

Average Shower Maximum: Comparison to TA

 $\langle \Delta \rangle = (2.9 \pm 2.7 \text{ (stat.)} \pm 18 \text{ (syst.)}) \text{ g/cm}^2$

MU for the Pierre Auger and TA Collaborations, Proc. 34th ICRC, arXiv:1511.02103

[10 of 31]

Correlation between \mathbf{X}_{\max} and SD Signal

 $18.5 < \lg(E/eV) < 19.0, X_{\max}^*/S^*(1000)$: scaled to 10^{19} eV

A. Yushkov for the Pierre Auger Coll., Proc. 34th ICRC, arXiv:1509.03732

Correlation between \mathbf{X}_{max} and SD Signal

heavier nuclei produce shallower showers with larger signal (more muons) general characteristics of air showers / minor model dependence

More negative correlation \Rightarrow more mixed composition

A. Yushkov for the Pierre Auger Coll., Proc. 34th ICRC, arXiv:1509.03732

Correlation between \mathbf{X}_{\max} and SD Signal

Data:

 $\begin{array}{c} r_{\rm G}(X^*_{\rm max},\,S^*(1000)) \mbox{ for protons} \\ \mbox{Epos-LHC} & \mbox{QGSJetII-04} & \mbox{Sibyll 2.1} \\ \mbox{0.00} & \mbox{+0.08} & \mbox{+0.07} \\ \mbox{difference to data} \\ \mbox{ \approx } 5\sigma & \mbox{ \approx } 8\sigma & \mbox{ \approx } 7.5\sigma \\ \mbox{difference is larger for other pure beams} \end{array}$

A. Yushkov for the Pierre Auger Coll., Proc. 34th ICRC, arXiv:1509.03732

Self-Consistent CR+ ν Analysis (TA Spectrum, p)

spectral index at source γ and source evolution $(1+z)^m$

J. Heinze, D. Boncioli, M. Bustamante, W. Winter, arXiv:1512.05988

Measurement of the UHE *p*+Air Cross Section

tail of X_{max} distribution:

Measurement of the UHE *p*+Air Cross Section

R. Ulrich for the Pierre Auger Coll., Proc. 34th ICRC, arXiv:1509.03732

Derived UHE Proton+Proton Cross Section

R. Ulrich for the Pierre Auger Coll., Proc. 34th ICRC, arXiv:1509.03732

event 201114505353, $\theta = 75.6^{\circ}$, E = 15.5 EeV

Muon Number vs. X_{max} (FD)

Pierre Auger and TA Collaborations, APJ 794 (2014) 2, 172

Pierre Auger and TA Collaborations, APJ 794 (2014) 2, 172

Searches for a Localized Excess of UHECRs

Auger:

•
$$r = 1^{\circ} - 30^{\circ}, \Delta r = 1^{\circ}$$

•
$$E = 40 - 80$$
 EeV, $\Delta E = 1$ EeV

- ▶ $r = 12^{\circ}, E = 54$ EeV
- ▶ $n_{\rm obs}/n_{\rm exp} = 14/3.23$
- pre-trial: 4.3 σ
- post-trial: P = 69%

TA:

►
$$r = 15^{\circ} - 35^{\circ}$$
, $\Delta r = 5^{\circ}$

► E = 57 EeV

- ▶ $r = 20^{\circ}, E = 57$ EeV
- ▶ $n_{\rm obs}/n_{\rm exp}$ = 24/6.88
- pre-trial: 5.1 σ
- post-trial: 3.4 σ

Auger Coll., APJ 804 (2015) 1, 15; TA Coll., APJ 790 (2014) L21, 7-year update at ICRC15.

Summary of Observations

- spectrum
 - \rightarrow flux suppression at $E\gtrsim5\times10^{19}~{\rm eV}$
- ▶ elongation rate, ⟨X_{max}⟩, σ(X_{max}), r_G(X_{max}^{*}/S^{*}(1000))
 → mixed composition around and above the ankle (if LHC-inspired extrapolations of hadronic interactions are ok)
- neutrinos and photons \rightarrow see Carla's talk!
 - \rightarrow start probing cosmogenic fluxes from 100% p
- p+air cross section
 - \rightarrow compatible with model extrapolations
- arrival directions
 - \rightarrow isotropic in the South, some hints for anisotropy in the North
- muons content of air showers

 \rightarrow at odds with predictions for mixed composition

Origin of Ankle and Flux Suppression?

Kampert&Tinyakov, CRP 15 (2014) 318; Aloisio, Berezinsky & Blasi, JCAP 1410 (2014) 10, 02

Ankle from Interactions in Source Environment?

MU, Farrar & Anchordoqui, PRD 92 (2015) 123001

Ankle from Interactions in Source Environment?

MU, Farrar & Anchordoqui, PRD 92 (2015) 123001

Upgrade of the Pierre Auger Observatory

- origin of flux suppression?
- proton fraction at UHE?
- hadronic physics above $\sqrt{s} = 140 \text{ TeV}$

V. de Souza for the Pierre Auger Collaboration, Proc. UHECR14

Upgrade of the Pierre Auger Observatory

additional scintillators (4 m²)

ightarrow event-by-event mass estimate with 100% duty cycle

 X_{\max} determination:

muon determination:

[27 of 31]

Upgrade of the Pierre Auger Observatory

low-Z particle astronomy

no mass determination:

(isotropic background: 25%)

p-Fe separation merit factor: 1.5

TAx4

quadruple acceptance:

- ▶ 500 add. SDs
- > 2.08 km spacing
- 2 add. FD stations

TAx4

Sagawa for TA, UHECR14.

Outlook

- TA & Auger Upgrades:
 - study nature of flux suppression
 - prospects for particle astronomy
 - R&D for Next Generation Observatory
- fluorescence detection from space
 - KLYPVE, Mini-EUSO (K-EUSO), EUSO
- radio detection of air showers
 - ground-based hybrid detectors (radio&surface)
 - high-altitude antennas
- LHC run II

• $\sqrt{s} = 14$ TeV ($E_{CR} = 10^{17}$ eV), p+O collisions?