Uncertainties of Models of the Galactic Magnetic Field

M. Unger & G.R. Farrar

JF12 visualization by Farrar & Sandstrom

Motivation

Dipole paper:

"...arrows show the deflections expected for a particular model of the Galactic magnetic field for E/Z = 5 EeV or 2 EeV."

Motivation

Jonathan& Olivier (AD phone meeting Feb. 22):

"Anisotropy consistent with magnetic blurring for CNO nuclei."

Fitting GMF Models

Fit Variations

id	disk	toroidal	poloidal	NE	ncre	QU	misc	$\chi^2/{ m ndf}$	_
Parametric models									
а	JF	JF	JF	01	GP_JF	W7	-	1.10	
b	JF	JF	FTC	01	GP_JF	W7	-	1.09	
С	JF	JFsym	FTC	01	GP_JF	W7	-	1.11	
d	JF	JFsym	FTC	01	GP_JF	W7	warp	1.11	
е	m4	JFsym	FTC	01	GP_JF	W7	-	1.09	
f	m4	twisted FTC		01	GP_JF	W7	-	1.14	
g	m4	twisted F	FTC, $r_{\rm cut}$	01	GP_JF	W7	-	1.09	
Synchrotron products									
h	JF	JFsym	FTC	01	GP_JF	W9base	-	1.22	
i	JF	JFsym	FTC	01	GP_JF	W9sdc	-	1.24	
j	JF	JFsym	FTC	01	GP_JF	W9fs	-	1.11	
k	JF	JFsym	FTC	01	GP_JF	W9fss	-	1.22	
Ι	JF	JFsym	FTC	01	GP_JF	P15	-	0.78	
Thermal electrons									
m	JF	JFsym	FTC	16	GP_JF	W7	-	1.21	
n	m4	JFsym	FTC	16	GP_JF	W7	-	1.14	
0	JF	JF	FTC	01	GP_JF	W7	$\kappa = -1$	1.05	
р	JF	JF	FTC	01	GP_JF	W7	$\kappa = +1$	1.05	
q	JF	JFsym	FTC	01	GP_JF	W7	HIM	1.12	
Cosmic-ray electrons									
r	JF	JFsym	FTC	01	013a	W7	-	1.13	
s	JF	JFsym	FTC	01	O13b	W7	-	1.12	
t	JF	JFsym	FTC	01	S10	W7	-	1.13	

Back-tracking, $\mathbf{R}=60~\text{EV}$

Back-tracking, $\mathbf{R}=30\;\text{EV}$

-90°

Back-tracking, $\mathbf{R}=\mathbf{20}\;\text{EV}$

-904

Back-tracking, $\mathbf{R}=\mathbf{10}\;\text{EV}$

-90°

Back-tracking of Dipole, $\mathbf{R} = \mathbf{6} \text{ EV} (\sim 10 \text{ EeV}, \langle Z \rangle = 1.7)$

Back-tracking of Dipole, $\mathbf{R} = \mathbf{5} \text{ EV}$ ($\sim 10 \text{ EeV}, \langle Z \rangle = 2$)

Back-tracking of Dipole, $\mathbf{R} = 4 \text{ EV}$ (~ 10 EeV, $\langle Z \rangle = 2.5$)

Back-tracking of Dipole, $\mathbf{R} = \mathbf{3} \text{ EV} (\sim 10 \text{ EeV}, \langle Z \rangle = 3.3)$

Back-tracking of Dipole, $\mathbf{R} = \mathbf{2} \text{ EV}$ (~ 10 EeV, $\langle Z \rangle = 5$)

Back-tracking in Direction of Starburst Galaxies , $\mathbf{R}=\mathbf{8}\;\mathsf{EV}\;(\sim50\;\mathsf{EeV}\;\mathsf{C})$

Back-tracking in Direction of Starburst Galaxies , $\mathbf{R}=7$ EV (${\sim}50$ EeV N)

Back-tracking in Direction of Starburst Galaxies , $\mathbf{R}=6$ EV (${\sim}50$ EeV O)

Forward-tracking from Starburst Galaxies , $\mathbf{R}=8$ EV (${\sim}50$ EeV C)

Forward-tracking from Starburst Galaxies , $\mathbf{R}=7~\text{EV}~({\sim}50~\text{EeV}~\text{N})$

Forward-tracking from Starburst Galaxies , $\mathbf{R}=6$ EV (${\sim}50$ EeV O)

Summary

- lower limit on GMF model uncertainties by variation of underlying model assumptions
- ultimate goal: provide deflection-pdf for anisotropy studies
- 2MRS dipole compatible with CR dipole within model uncertainties
- ► large deflections for nuclei in direction of hot/warm spots → compatible with starburst scenario?